executor_dpo.py 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184
  1. # Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
  2. # 2024 Alibaba Inc (authors: Xiang Lyu)
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. import logging
  16. from contextlib import nullcontext
  17. import os
  18. import torch
  19. import torch.distributed as dist
  20. from cosyvoice.utils.train_utils_dpo import update_parameter_and_lr, log_per_step, log_per_save, batch_forward, batch_backward, save_model, cosyvoice_join
  21. from cosyvoice.utils.losses_dpo import DPOLoss
  22. class Executor:
  23. def __init__(self, gan: bool = False, dpo: bool = False, beta: float = 0.01, label_smoothing: float = 0.0, ipo: bool = False):
  24. self.gan = gan
  25. self.step = 0
  26. self.epoch = 0
  27. self.rank = int(os.environ.get('RANK', 0))
  28. self.device = torch.device('cuda:{}'.format(self.rank))
  29. self.dpo = dpo
  30. if self.dpo:
  31. self.dpo_loss = DPOLoss(beta, label_smoothing, ipo)
  32. else:
  33. self.dpo_loss = None
  34. def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=None):
  35. ''' Train one epoch
  36. '''
  37. lr = optimizer.param_groups[0]['lr']
  38. logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
  39. logging.info('using accumulate grad, new batch size is {} times'
  40. ' larger than before'.format(info_dict['accum_grad']))
  41. # A context manager to be used in conjunction with an instance of
  42. # torch.nn.parallel.DistributedDataParallel to be able to train
  43. # with uneven inputs across participating processes.
  44. model.train()
  45. if self.dpo:
  46. assert ref_model is not None
  47. ref_model.eval()
  48. model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
  49. with model_context():
  50. for batch_idx, batch_dict in enumerate(train_data_loader):
  51. info_dict["tag"] = "TRAIN"
  52. info_dict["step"] = self.step
  53. info_dict["epoch"] = self.epoch
  54. info_dict["batch_idx"] = batch_idx
  55. if cosyvoice_join(group_join, info_dict):
  56. break
  57. # Disable gradient synchronizations across DDP processes.
  58. # Within this context, gradients will be accumulated on module
  59. # variables, which will later be synchronized.
  60. if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
  61. context = model.no_sync
  62. # Used for single gpu training and DDP gradient synchronization
  63. # processes.
  64. else:
  65. context = nullcontext
  66. with context():
  67. info_dict = batch_forward(model, batch_dict, scaler, info_dict, ref_model, self.dpo_loss)
  68. info_dict = batch_backward(model, scaler, info_dict)
  69. info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
  70. log_per_step(writer, info_dict)
  71. # NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
  72. if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
  73. (batch_idx + 1) % info_dict["accum_grad"] == 0:
  74. dist.barrier()
  75. self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False, ref_model=ref_model, dpo_loss=self.dpo_loss)
  76. model.train()
  77. if (batch_idx + 1) % info_dict["accum_grad"] == 0:
  78. self.step += 1
  79. dist.barrier()
  80. self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True, ref_model=ref_model, dpo_loss=self.dpo_loss)
  81. def train_one_epoc_gan(self, model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
  82. writer, info_dict, scaler, group_join):
  83. ''' Train one epoch
  84. '''
  85. lr = optimizer.param_groups[0]['lr']
  86. logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
  87. logging.info('using accumulate grad, new batch size is {} times'
  88. ' larger than before'.format(info_dict['accum_grad']))
  89. # A context manager to be used in conjunction with an instance of
  90. # torch.nn.parallel.DistributedDataParallel to be able to train
  91. # with uneven inputs across participating processes.
  92. model.train()
  93. model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
  94. with model_context():
  95. for batch_idx, batch_dict in enumerate(train_data_loader):
  96. info_dict["tag"] = "TRAIN"
  97. info_dict["step"] = self.step
  98. info_dict["epoch"] = self.epoch
  99. info_dict["batch_idx"] = batch_idx
  100. if cosyvoice_join(group_join, info_dict):
  101. break
  102. # Disable gradient synchronizations across DDP processes.
  103. # Within this context, gradients will be accumulated on module
  104. # variables, which will later be synchronized.
  105. if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
  106. context = model.no_sync
  107. # Used for single gpu training and DDP gradient synchronization
  108. # processes.
  109. else:
  110. context = nullcontext
  111. with context():
  112. batch_dict['turn'] = 'discriminator'
  113. info_dict = batch_forward(model, batch_dict, scaler, info_dict)
  114. info_dict = batch_backward(model, scaler, info_dict)
  115. info_dict = update_parameter_and_lr(model, optimizer_d, scheduler_d, scaler, info_dict)
  116. optimizer.zero_grad()
  117. log_per_step(writer, info_dict)
  118. with context():
  119. batch_dict['turn'] = 'generator'
  120. info_dict = batch_forward(model, batch_dict, scaler, info_dict)
  121. info_dict = batch_backward(model, scaler, info_dict)
  122. info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
  123. optimizer_d.zero_grad()
  124. log_per_step(writer, info_dict)
  125. # NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
  126. if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
  127. (batch_idx + 1) % info_dict["accum_grad"] == 0:
  128. dist.barrier()
  129. self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
  130. model.train()
  131. if (batch_idx + 1) % info_dict["accum_grad"] == 0:
  132. self.step += 1
  133. dist.barrier()
  134. self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
  135. @torch.inference_mode()
  136. def cv(self, model, cv_data_loader, writer, info_dict, on_batch_end=True, ref_model=None, dpo_loss=None):
  137. ''' Cross validation on
  138. '''
  139. logging.info('Epoch {} Step {} on_batch_end {} CV rank {}'.format(self.epoch, self.step + 1, on_batch_end, self.rank))
  140. model.eval()
  141. if self.dpo:
  142. assert ref_model is not None
  143. ref_model.eval()
  144. total_num_utts, total_loss_dict = 0, {} # avoid division by 0
  145. for batch_idx, batch_dict in enumerate(cv_data_loader):
  146. info_dict["tag"] = "CV"
  147. info_dict["step"] = self.step
  148. info_dict["epoch"] = self.epoch
  149. info_dict["batch_idx"] = batch_idx
  150. num_utts = len(batch_dict["utts"])
  151. total_num_utts += num_utts
  152. if self.gan is True:
  153. batch_dict['turn'] = 'generator'
  154. info_dict = batch_forward(model, batch_dict, None, info_dict, ref_model, dpo_loss)
  155. for k, v in info_dict['loss_dict'].items():
  156. if k not in total_loss_dict:
  157. total_loss_dict[k] = []
  158. total_loss_dict[k].append(v.item() * num_utts)
  159. log_per_step(None, info_dict)
  160. for k, v in total_loss_dict.items():
  161. total_loss_dict[k] = sum(v) / total_num_utts
  162. info_dict['loss_dict'] = total_loss_dict
  163. log_per_save(writer, info_dict)
  164. model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1)
  165. save_model(model, model_name, info_dict)