train_dpo.py 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187
  1. # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import print_function
  15. import argparse
  16. import datetime
  17. import logging
  18. logging.getLogger('matplotlib').setLevel(logging.WARNING)
  19. from copy import deepcopy
  20. import os
  21. import torch
  22. import torch.distributed as dist
  23. import deepspeed
  24. from hyperpyyaml import load_hyperpyyaml
  25. from torch.distributed.elastic.multiprocessing.errors import record
  26. from cosyvoice.utils.executor_dpo import Executor
  27. from cosyvoice.utils.train_utils_dpo import (
  28. init_distributed,
  29. init_dataset_and_dataloader,
  30. init_optimizer_and_scheduler,
  31. init_summarywriter, save_model,
  32. wrap_cuda_model, check_modify_and_save_config)
  33. def get_args():
  34. parser = argparse.ArgumentParser(description='training your network')
  35. parser.add_argument('--train_engine',
  36. default='torch_ddp',
  37. choices=['torch_ddp', 'deepspeed'],
  38. help='Engine for paralleled training')
  39. parser.add_argument('--model', required=True, help='model which will be trained')
  40. parser.add_argument('--config', required=True, help='config file')
  41. parser.add_argument('--train_data', required=True, help='train data file')
  42. parser.add_argument('--cv_data', required=True, help='cv data file')
  43. parser.add_argument('--checkpoint', help='checkpoint model')
  44. parser.add_argument('--model_dir', required=True, help='save model dir')
  45. parser.add_argument('--tensorboard_dir',
  46. default='tensorboard',
  47. help='tensorboard log dir')
  48. parser.add_argument('--ddp.dist_backend',
  49. dest='dist_backend',
  50. default='nccl',
  51. choices=['nccl', 'gloo'],
  52. help='distributed backend')
  53. parser.add_argument('--num_workers',
  54. default=0,
  55. type=int,
  56. help='num of subprocess workers for reading')
  57. parser.add_argument('--prefetch',
  58. default=100,
  59. type=int,
  60. help='prefetch number')
  61. parser.add_argument('--pin_memory',
  62. action='store_true',
  63. default=False,
  64. help='Use pinned memory buffers used for reading')
  65. parser.add_argument('--use_amp',
  66. action='store_true',
  67. default=False,
  68. help='Use automatic mixed precision training')
  69. parser.add_argument('--deepspeed.save_states',
  70. dest='save_states',
  71. default='model_only',
  72. choices=['model_only', 'model+optimizer'],
  73. help='save model/optimizer states')
  74. parser.add_argument('--timeout',
  75. default=60,
  76. type=int,
  77. help='timeout (in seconds) of cosyvoice_join.')
  78. parser.add_argument('--dpo',
  79. action='store_true',
  80. default=False,
  81. help='Use Direct Preference Optimization')
  82. parser.add_argument('--beta',
  83. default=0.01,
  84. type=float,
  85. help='beta of dpo training')
  86. parser = deepspeed.add_config_arguments(parser)
  87. args = parser.parse_args()
  88. return args
  89. @record
  90. def main():
  91. args = get_args()
  92. logging.basicConfig(level=logging.DEBUG,
  93. format='%(asctime)s %(levelname)s %(message)s')
  94. # gan train has some special initialization logic
  95. gan = True if args.model == 'hifigan' else False
  96. override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
  97. if gan is True:
  98. override_dict.pop('hift')
  99. with open(args.config, 'r') as f:
  100. configs = load_hyperpyyaml(f, overrides=override_dict)
  101. if gan is True:
  102. configs['train_conf'] = configs['train_conf_gan']
  103. configs['train_conf'].update(vars(args))
  104. # Init env for ddp
  105. init_distributed(args)
  106. # Get dataset & dataloader
  107. train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
  108. init_dataset_and_dataloader(args, configs, gan)
  109. # Do some sanity checks and save config to arsg.model_dir
  110. configs = check_modify_and_save_config(args, configs)
  111. # Tensorboard summary
  112. writer = init_summarywriter(args)
  113. # load checkpoint
  114. model = configs[args.model]
  115. ref_model = None
  116. if args.dpo:
  117. ref_model = deepcopy(model)
  118. start_step, start_epoch = 0, -1
  119. if args.checkpoint is not None:
  120. if os.path.exists(args.checkpoint):
  121. state_dict = torch.load(args.checkpoint, map_location='cpu')
  122. model.load_state_dict(state_dict, strict=False)
  123. if args.dpo:
  124. ref_model.load_state_dict(state_dict, strict=False)
  125. if 'step' in state_dict:
  126. start_step = state_dict['step']
  127. if 'epoch' in state_dict:
  128. start_epoch = state_dict['epoch']
  129. else:
  130. logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
  131. # Dispatch model from cpu to gpu
  132. model = wrap_cuda_model(args, model)
  133. if args.dpo:
  134. ref_model = wrap_cuda_model(args, ref_model)
  135. # Get optimizer & scheduler
  136. model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan)
  137. if args.dpo:
  138. ref_model, _, _, _, _ = init_optimizer_and_scheduler(args, configs, ref_model, gan)
  139. scheduler.set_step(start_step)
  140. if scheduler_d is not None:
  141. scheduler_d.set_step(start_step)
  142. # Save init checkpoints
  143. info_dict = deepcopy(configs['train_conf'])
  144. info_dict['step'] = start_step
  145. info_dict['epoch'] = start_epoch
  146. save_model(model, 'init', info_dict)
  147. # Get executor
  148. executor = Executor(gan=gan, dpo=args.dpo, beta=args.beta)
  149. executor.step = start_step
  150. # Init scaler, used for pytorch amp mixed precision training
  151. scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
  152. print('start step {} start epoch {}'.format(start_step, start_epoch))
  153. # Start training loop
  154. for epoch in range(start_epoch + 1, info_dict['max_epoch']):
  155. executor.epoch = epoch
  156. train_dataset.set_epoch(epoch)
  157. dist.barrier()
  158. group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
  159. if gan is True:
  160. executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
  161. writer, info_dict, scaler, group_join)
  162. else:
  163. executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model)
  164. dist.destroy_process_group(group_join)
  165. if __name__ == '__main__':
  166. main()