| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- # SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
- # SPDX-License-Identifier: Apache-2.0
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- python3 hf2pretrained.py --hf-cosyvoice2-llm-path /workspace/rl-exp/checkpoint-400 --output-path /workspace/CosyVoice2-0.5B/llm-new.pt
- """
- from argparse import ArgumentParser
- import torch
- from safetensors import safe_open
- from transformers import AutoTokenizer
- def get_args():
- parser = ArgumentParser()
- parser.add_argument(
- "--hf-cosyvoice2-llm-path",
- type=str,
- default=None,
- help="The RL trained CosyVoice2 model path in HuggingFace format",
- )
- parser.add_argument(
- "--output-path",
- type=str,
- default="./llm.pt",
- help="The path to save the llm.pt",
- )
- args = parser.parse_args()
- return args
- if __name__ == "__main__":
- args = get_args()
- tokenizer = AutoTokenizer.from_pretrained(args.hf_cosyvoice2_llm_path)
- speech_start_idx = tokenizer.convert_tokens_to_ids("<|s_0|>")
- cosyvoice2_token_size = 6561 + 3
- llm_embedding_vocab_size = 2
- hf_tensors = {}
- with safe_open(f"{args.hf_cosyvoice2_llm_path}/model.safetensors", framework="pt", device="cpu") as f:
- for k in f.keys():
- if k.startswith("lm_head.bias"):
- # RL trained model disable bias for lm_head
- continue
- new_k = "llm.model." + k
- hf_tensors[new_k] = f.get_tensor(k)
- if k.startswith("lm_head"):
- hf_tensors["llm_decoder.weight"] = f.get_tensor(k)[speech_start_idx:speech_start_idx + cosyvoice2_token_size]
- hf_tensors["llm_decoder.bias"] = torch.zeros_like(hf_tensors["llm_decoder.weight"][:, 0])
- if k.startswith("model.embed_tokens"):
- hf_tensors["speech_embedding.weight"] = f.get_tensor(k)[speech_start_idx:speech_start_idx + cosyvoice2_token_size]
- hf_tensors["llm_embedding.weight"] = f.get_tensor(k)[speech_start_idx + cosyvoice2_token_size:speech_start_idx + cosyvoice2_token_size + llm_embedding_vocab_size]
- # use tie_word_embeddings=True
- hf_tensors["llm.model.model.embed_tokens.weight"] = hf_tensors["llm.model.model.embed_tokens.weight"][:151936]
- hf_tensors["llm.model.lm_head.weight"] = hf_tensors["llm.model.model.embed_tokens.weight"]
- torch.save(hf_tensors, args.output_path)
|