| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- # SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
- # SPDX-License-Identifier: Apache-2.0
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Reward calculation for CosyVoice2-0.5B.
- """
- from __future__ import annotations
- import os, re, warnings, json, time, argparse
- from typing import List
- import numpy as np
- import requests
- REWARD_SERVER_URL = "http://localhost:8000/v2/models/token2wav_asr/infer"
- def _parse_ids(token_str: str) -> List[int]:
- return [int(t) for t in re.findall(r"<\|s_(\d+)\|>", token_str)]
- def _remote_reward(tokens: List[int], ground_truth: str, timeout: float = 200.0) -> float:
- """Send token IDs and ground-truth text to the Triton server and get reward."""
- tokens_arr = np.array(tokens, dtype=np.int32).reshape(1, -1)
- lens_arr = np.array([[tokens_arr.shape[1]]], dtype=np.int32)
- gt_arr = np.array([ground_truth.encode("utf-8")], dtype=object)
- payload = {
- "inputs": [
- {
- "name": "TOKENS",
- "shape": list(tokens_arr.shape),
- "datatype": "INT32",
- "data": tokens_arr.tolist(),
- },
- {
- "name": "TOKEN_LENS",
- "shape": list(lens_arr.shape),
- "datatype": "INT32",
- "data": lens_arr.tolist(),
- },
- {
- "name": "GT_TEXT",
- "shape": [1, 1],
- "datatype": "BYTES",
- "data": [ground_truth],
- },
- ]
- }
- rsp = requests.post(
- REWARD_SERVER_URL,
- headers={"Content-Type": "application/json"},
- json=payload,
- timeout=timeout,
- verify=False,
- params={"request_id": "0"},
- )
- rsp.raise_for_status()
- result = rsp.json()
- try:
- # Reward is returned as the first output
- return float(result["outputs"][0]["data"][0])
- except (KeyError, IndexError, TypeError):
- return 0.0
- def compute_score(
- data_source: str,
- solution_str: str,
- ground_truth: str,
- extra_info: dict | None = None,
- *,
- debug_dump: bool = False,
- ) -> float:
- """Return reward in [0, 1] using the Triton ASR service.
- The reward is based on the pinyin-level WER between the ASR transcript
- produced from *solution_str* and the provided *ground_truth* text.
- """
- # Decode token IDs
- ids = _parse_ids(solution_str)
- # Query remote server for reward
- try:
- reward = _remote_reward(ids, ground_truth)
- except Exception as e:
- warnings.warn(f"Remote reward server error: {e}; returning 0.0")
- reward = 0.0
- if debug_dump:
- print(
- f"\033[92m[{data_source}] Remote reward: {reward:.4f}\033[0m"
- )
- return reward
- # CLI quick test
- if __name__ == "__main__":
- import sys
-
- def get_args():
- """Parse command line arguments."""
- parser = argparse.ArgumentParser(
- description="Test TTS CER scoring with data from JSONL file",
- formatter_class=argparse.ArgumentDefaultsHelpFormatter
- )
-
- parser.add_argument(
- "--input", "-i",
- type=str,
- default="data/emilia_zh-cosy-tiny-test.jsonl",
- help="Path to input JSONL file"
- )
-
- parser.add_argument(
- "--max-samples", "-n",
- type=int,
- default=None,
- help="Maximum number of samples to process (default: all)"
- )
-
- parser.add_argument(
- "--no-interactive",
- action="store_true",
- help="Run in non-interactive mode (process all samples without prompts)"
- )
-
-
- parser.add_argument(
- "--debug",
- action="store_true",
- help="Enable debug mode"
- )
-
- return parser.parse_args()
-
- def load_jsonl(file_path: str):
- """Load data from jsonl file."""
- data = []
- with open(file_path, 'r', encoding='utf-8') as f:
- for line in f:
- data.append(json.loads(line.strip()))
- return data
-
- def code_to_solution_str(code_list: List[int]) -> str:
- """Convert code list to solution string format."""
- return ''.join([f"<|s_{code}|>" for code in code_list])
-
- # Parse command line arguments
- args = get_args()
-
- try:
- # Load data from jsonl file
- print(f"Loading data from: {args.input}")
- data_list = load_jsonl(args.input)
- print(f"Loaded {len(data_list)} samples")
-
- # Limit samples if specified
- if args.max_samples is not None:
- data_list = data_list[:args.max_samples]
- print(f"Processing first {len(data_list)} samples (limited by --max-samples)")
-
- # Process each sample
- begin_time = time.time()
- for i, sample in enumerate(data_list):
- print(f"\n--- Sample {i+1}/{len(data_list)} ---")
- print(f"Index: {sample.get('index', 'unknown')}")
- print(f"Text: {sample['text']}")
-
- # Extract required fields
- code_list = sample['code']
- ground_truth = sample['text']
- data_source = sample.get('index', f'sample_{i}') # Use index as data_source
-
- # Convert code list to solution string
- solution_str = code_to_solution_str(code_list)
- print(f"Solution tokens: {len(code_list)} tokens")
- if args.debug:
- print(f"Solution string: {solution_str}")
- else:
- print(f"Solution string preview: {solution_str[:100]}..." if len(solution_str) > 100 else f"Solution string: {solution_str}")
-
- # Call compute_score function
- try:
- score = compute_score(
- data_source=data_source,
- solution_str=solution_str,
- ground_truth=ground_truth,
- extra_info=None,
- debug_dump=args.debug
- )
- print(f"Final Score: {score:.4f}")
- except Exception as e:
- print(f"Error computing score: {e}")
-
- # Ask user if they want to continue (for interactive mode)
- if not args.no_interactive and i < len(data_list) - 1:
- try:
- response = input("\nPress Enter to continue or 'q' to quit: ").strip().lower()
- if response == 'q':
- break
- except KeyboardInterrupt:
- print("\nStopped by user")
- break
-
- print(f"\nProcessed {min(i+1, len(data_list))} samples")
- end_time = time.time()
- print(f"Time taken: {end_time - begin_time} seconds")
- except FileNotFoundError:
- print(f"Error: File not found - {args.input}")
- print("Please check the file path or use --input to specify correct path")
- print("Run with --help for usage information")
- except Exception as e:
- print(f"Error: {e}")
|