| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- #!/usr/bin/env bash
- set -eou pipefail
- stage=-1
- stop_stage=5
- log() {
- # This function is from espnet
- local fname=${BASH_SOURCE[1]##*/}
- echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
- }
- export PYTHONPATH=/workspace/CosyVoice
- model_scope_model_path=./CosyVoice2-0.5B
- sft_model_path=./transformers_cosyvoice2_llm
- if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
- log "stage -1: download official CosyVoice2-0.5B LLM model and convert to huggingface compatible checkpoint"
- modelscope download --model iic/CosyVoice2-0.5B --local_dir $model_scope_model_path
- python3 pretrained_to_huggingface.py \
- --pretrained-cosyvoice2-path $model_scope_model_path \
- --save-path $sft_model_path
- # Or, you could use the following command to download the huggingface compatible checkpoint
- # huggingface-cli download --local-dir $sft_model_path yuekai/cosyvoice2_llm
- fi
- data_dir=data/parquet_aishell3
- if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
- log "stage 0: prepare data into verl format"
- mkdir -p $data_dir
- wget https://huggingface.co/datasets/SparkAudio/voxbox/resolve/main/metadata/aishell-3.jsonl -O data/aishell-3.jsonl
- # total 88035 samples
- head -n 80000 data/aishell-3.jsonl > data/train.jsonl
- tail -n 100 data/aishell-3.jsonl > data/test.jsonl
- python prepare_data.py \
- --train_file data/train.jsonl \
- --test_file data/test.jsonl \
- --local_dir $data_dir
- fi
- if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
- log "stage 1: start token2wav asr server for reward function"
- python3 token2wav_asr_server.py --number-of-devices 8
- fi
- exp_name=official_llm_aishell3_grpo
- if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
- log "stage 2: grpo train"
- export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
- export MKL_SERVICE_FORCE_INTEL=TRUE
- n_gpus_per_node=8
- micro_batch_size=4
- train_batch_size=32
- python3 -m verl.trainer.main_ppo \
- algorithm.adv_estimator=grpo \
- data.train_files=$data_dir/train.parquet \
- data.val_files=$data_dir/test.parquet \
- data.train_batch_size=$train_batch_size \
- data.max_prompt_length=1024 \
- data.max_response_length=512 \
- data.truncation='error' \
- actor_rollout_ref.model.use_remove_padding=False \
- actor_rollout_ref.model.path=$sft_model_path \
- actor_rollout_ref.actor.optim.lr=1e-6 \
- actor_rollout_ref.actor.ppo_mini_batch_size=32 \
- actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=$micro_batch_size \
- actor_rollout_ref.actor.use_kl_loss=False \
- actor_rollout_ref.model.enable_gradient_checkpointing=True \
- actor_rollout_ref.actor.fsdp_config.param_offload=False \
- actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
- actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=$micro_batch_size \
- actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
- actor_rollout_ref.rollout.name=vllm \
- actor_rollout_ref.rollout.gpu_memory_utilization=0.6 \
- actor_rollout_ref.rollout.do_sample=true \
- actor_rollout_ref.rollout.temperature=0.8 \
- actor_rollout_ref.rollout.top_p=0.95 \
- actor_rollout_ref.rollout.top_k=25 \
- actor_rollout_ref.rollout.n=4 \
- actor_rollout_ref.rollout.val_kwargs.do_sample=true \
- actor_rollout_ref.rollout.val_kwargs.temperature=0.8 \
- actor_rollout_ref.rollout.val_kwargs.top_p=0.95 \
- actor_rollout_ref.rollout.val_kwargs.top_k=25 \
- reward_model.reward_manager=prime \
- custom_reward_function.path=reward_tts.py \
- custom_reward_function.name=compute_score \
- trainer.project_name='cosyvoice2_grpo' \
- trainer.experiment_name=$exp_name \
- trainer.logger=['console','wandb'] \
- trainer.n_gpus_per_node=$n_gpus_per_node \
- trainer.nnodes=1 \
- trainer.save_freq=100 \
- trainer.test_freq=100 \
- trainer.resume_mode='auto' \
- trainer.total_epochs=1 \
- trainer.val_before_train=False
- fi
- step=400
- llm_path=./checkpoints/cosyvoice2_grpo/$exp_name/global_step_${step}
- if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
- log "stage 3: merge the model"
- python -m verl.model_merger merge \
- --backend fsdp \
- --local_dir $llm_path/actor \
- --target_dir $llm_path/merged_hf_model || exit 1
- fi
- if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
- log "stage 4: Test the model"
- dataset=zero_shot_zh
- # dataset=test_zh
- output_dir=./outputs_${exp_name}_${step}_${dataset}
- token2wav_path=/workspace/CosyVoice2-0.5B
- model_path=$llm_path/merged_hf_model
- CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
- torchrun --nproc_per_node=8 \
- infer_dataset.py \
- --output-dir $output_dir \
- --llm-model-name-or-path $model_path \
- --token2wav-path $token2wav_path \
- --split-name ${dataset} || exit 1
- bash scripts/compute_wer.sh $output_dir ${dataset}
- fi
- if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
- log "stage 5: Convert the RL trained model to CosyVoice repo format"
- python3 huggingface_to_pretrained.py \
- --hf-cosyvoice2-llm-path $llm_path/merged_hf_model \
- --pretrained-cosyvoice2-path /workspace/CosyVoice2-0.5B \
- --output-path /workspace/CosyVoice2-0.5B/llm-new.pt
- # You need to manually move the llm-new.pt to overwrite /workspace/CosyVoice2-0.5B/llm.pt
- fi
|