| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240 |
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import time
- from typing import Generator
- from tqdm import tqdm
- from hyperpyyaml import load_hyperpyyaml
- from modelscope import snapshot_download
- import torch
- from cosyvoice.cli.frontend import CosyVoiceFrontEnd
- from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model, CosyVoice3Model
- from cosyvoice.utils.file_utils import logging
- from cosyvoice.utils.class_utils import get_model_type
- class CosyVoice:
- def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1):
- self.model_dir = model_dir
- self.fp16 = fp16
- if not os.path.exists(model_dir):
- model_dir = snapshot_download(model_dir)
- hyper_yaml_path = '{}/cosyvoice.yaml'.format(model_dir)
- if not os.path.exists(hyper_yaml_path):
- raise ValueError('{} not found!'.format(hyper_yaml_path))
- with open(hyper_yaml_path, 'r') as f:
- configs = load_hyperpyyaml(f)
- assert get_model_type(configs) == CosyVoiceModel, 'do not use {} for CosyVoice initialization!'.format(model_dir)
- self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
- configs['feat_extractor'],
- '{}/campplus.onnx'.format(model_dir),
- '{}/speech_tokenizer_v1.onnx'.format(model_dir),
- '{}/spk2info.pt'.format(model_dir),
- configs['allowed_special'])
- self.sample_rate = configs['sample_rate']
- if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
- load_jit, load_trt, fp16 = False, False, False
- logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
- self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
- self.model.load('{}/llm.pt'.format(model_dir),
- '{}/flow.pt'.format(model_dir),
- '{}/hift.pt'.format(model_dir))
- if load_jit:
- self.model.load_jit('{}/llm.text_encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
- '{}/llm.llm.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
- '{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
- if load_trt:
- self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
- '{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
- trt_concurrent,
- self.fp16)
- del configs
- def list_available_spks(self):
- spks = list(self.frontend.spk2info.keys())
- return spks
- def add_zero_shot_spk(self, prompt_text, prompt_wav, zero_shot_spk_id):
- assert zero_shot_spk_id != '', 'do not use empty zero_shot_spk_id'
- model_input = self.frontend.frontend_zero_shot('', prompt_text, prompt_wav, self.sample_rate, '')
- del model_input['text']
- del model_input['text_len']
- self.frontend.spk2info[zero_shot_spk_id] = model_input
- return True
- def save_spkinfo(self):
- torch.save(self.frontend.spk2info, '{}/spk2info.pt'.format(self.model_dir))
- def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
- for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
- model_input = self.frontend.frontend_sft(i, spk_id)
- start_time = time.time()
- logging.info('synthesis text {}'.format(i))
- for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
- speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
- logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
- yield model_output
- start_time = time.time()
- def inference_zero_shot(self, tts_text, prompt_text, prompt_wav, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
- if self.__class__.__name__ == 'CosyVoice3' and '<|endofprompt|>' not in prompt_text + tts_text:
- logging.warning('<|endofprompt|> not found in CosyVoice3 inference, check your input text')
- prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
- for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
- if (not isinstance(i, Generator)) and len(i) < 0.5 * len(prompt_text):
- logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
- model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_wav, self.sample_rate, zero_shot_spk_id)
- start_time = time.time()
- logging.info('synthesis text {}'.format(i))
- for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
- speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
- logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
- yield model_output
- start_time = time.time()
- def inference_cross_lingual(self, tts_text, prompt_wav, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
- for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
- model_input = self.frontend.frontend_cross_lingual(i, prompt_wav, self.sample_rate, zero_shot_spk_id)
- start_time = time.time()
- logging.info('synthesis text {}'.format(i))
- for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
- speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
- logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
- yield model_output
- start_time = time.time()
- def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
- assert self.__class__.__name__ == 'CosyVoice', 'inference_instruct is only implemented for CosyVoice!'
- instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
- for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
- model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
- start_time = time.time()
- logging.info('synthesis text {}'.format(i))
- for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
- speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
- logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
- yield model_output
- start_time = time.time()
- def inference_vc(self, source_wav, prompt_wav, stream=False, speed=1.0):
- model_input = self.frontend.frontend_vc(source_wav, prompt_wav, self.sample_rate)
- start_time = time.time()
- for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
- speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
- logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
- yield model_output
- start_time = time.time()
- class CosyVoice2(CosyVoice):
- def __init__(self, model_dir, load_jit=False, load_trt=False, load_vllm=False, fp16=False, trt_concurrent=1):
- self.model_dir = model_dir
- self.fp16 = fp16
- if not os.path.exists(model_dir):
- model_dir = snapshot_download(model_dir)
- hyper_yaml_path = '{}/cosyvoice2.yaml'.format(model_dir)
- if not os.path.exists(hyper_yaml_path):
- raise ValueError('{} not found!'.format(hyper_yaml_path))
- with open(hyper_yaml_path, 'r') as f:
- configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
- assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
- self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
- configs['feat_extractor'],
- '{}/campplus.onnx'.format(model_dir),
- '{}/speech_tokenizer_v2.onnx'.format(model_dir),
- '{}/spk2info.pt'.format(model_dir),
- configs['allowed_special'])
- self.sample_rate = configs['sample_rate']
- if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or load_vllm is True or fp16 is True):
- load_jit, load_trt, load_vllm, fp16 = False, False, False, False
- logging.warning('no cuda device, set load_jit/load_trt/load_vllm/fp16 to False')
- self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
- self.model.load('{}/llm.pt'.format(model_dir),
- '{}/flow.pt'.format(model_dir),
- '{}/hift.pt'.format(model_dir))
- if load_vllm:
- self.model.load_vllm('{}/vllm'.format(model_dir))
- if load_jit:
- self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
- if load_trt:
- self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
- '{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
- trt_concurrent,
- self.fp16)
- del configs
- def inference_instruct2(self, tts_text, instruct_text, prompt_wav, zero_shot_spk_id='', stream=False, speed=1.0, text_frontend=True):
- for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
- model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_wav, self.sample_rate, zero_shot_spk_id)
- start_time = time.time()
- logging.info('synthesis text {}'.format(i))
- for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
- speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
- logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
- yield model_output
- start_time = time.time()
- class CosyVoice3(CosyVoice2):
- def __init__(self, model_dir, load_trt=False, load_vllm=False, fp16=False, trt_concurrent=1):
- self.model_dir = model_dir
- self.fp16 = fp16
- if not os.path.exists(model_dir):
- model_dir = snapshot_download(model_dir)
- hyper_yaml_path = '{}/cosyvoice3.yaml'.format(model_dir)
- if not os.path.exists(hyper_yaml_path):
- raise ValueError('{} not found!'.format(hyper_yaml_path))
- with open(hyper_yaml_path, 'r') as f:
- configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
- assert get_model_type(configs) == CosyVoice3Model, 'do not use {} for CosyVoice3 initialization!'.format(model_dir)
- self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
- configs['feat_extractor'],
- '{}/campplus.onnx'.format(model_dir),
- '{}/speech_tokenizer_v3.onnx'.format(model_dir),
- '{}/spk2info.pt'.format(model_dir),
- configs['allowed_special'])
- self.sample_rate = configs['sample_rate']
- if torch.cuda.is_available() is False and (load_trt is True or fp16 is True):
- load_trt, fp16 = False, False
- logging.warning('no cuda device, set load_trt/fp16 to False')
- self.model = CosyVoice3Model(configs['llm'], configs['flow'], configs['hift'], fp16)
- self.model.load('{}/llm.pt'.format(model_dir),
- '{}/flow.pt'.format(model_dir),
- '{}/hift.pt'.format(model_dir))
- if load_vllm:
- self.model.load_vllm('{}/vllm'.format(model_dir))
- if load_trt:
- if self.fp16 is True:
- logging.warning('DiT tensorRT fp16 engine have some performance issue, use at caution!')
- self.model.load_trt('{}/flow.decoder.estimator.{}.mygpu.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
- '{}/flow.decoder.estimator.fp32.onnx'.format(model_dir),
- trt_concurrent,
- self.fp16)
- del configs
- def AutoModel(**kwargs):
- if not os.path.exists(kwargs['model_dir']):
- kwargs['model_dir'] = snapshot_download(kwargs['model_dir'])
- if os.path.exists('{}/cosyvoice.yaml'.format(kwargs['model_dir'])):
- return CosyVoice(**kwargs)
- elif os.path.exists('{}/cosyvoice2.yaml'.format(kwargs['model_dir'])):
- return CosyVoice2(**kwargs)
- elif os.path.exists('{}/cosyvoice3.yaml'.format(kwargs['model_dir'])):
- return CosyVoice3(**kwargs)
- else:
- raise TypeError('No valid model type found!')
|