| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215 |
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from functools import partial
- from typing import Generator
- import json
- import onnxruntime
- import torch
- import numpy as np
- import whisper
- from typing import Callable
- import torchaudio.compliance.kaldi as kaldi
- import torchaudio
- import os
- import re
- import inflect
- try:
- import ttsfrd
- use_ttsfrd = True
- except ImportError:
- print("failed to import ttsfrd, use WeTextProcessing instead")
- from tn.chinese.normalizer import Normalizer as ZhNormalizer
- from tn.english.normalizer import Normalizer as EnNormalizer
- use_ttsfrd = False
- from cosyvoice.utils.file_utils import logging
- from cosyvoice.utils.frontend_utils import contains_chinese, replace_blank, replace_corner_mark, remove_bracket, spell_out_number, split_paragraph, is_only_punctuation
- class CosyVoiceFrontEnd:
- def __init__(self,
- get_tokenizer: Callable,
- feat_extractor: Callable,
- campplus_model: str,
- speech_tokenizer_model: str,
- spk2info: str = '',
- allowed_special: str = 'all'):
- self.tokenizer = get_tokenizer()
- self.feat_extractor = feat_extractor
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- option = onnxruntime.SessionOptions()
- option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
- option.intra_op_num_threads = 1
- self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
- self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option,
- providers=["CUDAExecutionProvider" if torch.cuda.is_available() else
- "CPUExecutionProvider"])
- if os.path.exists(spk2info):
- self.spk2info = torch.load(spk2info, map_location=self.device)
- else:
- self.spk2info = {}
- self.allowed_special = allowed_special
- self.use_ttsfrd = use_ttsfrd
- if self.use_ttsfrd:
- self.frd = ttsfrd.TtsFrontendEngine()
- ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
- assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, \
- 'failed to initialize ttsfrd resource'
- self.frd.set_lang_type('pinyinvg')
- else:
- self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False, overwrite_cache=True)
- self.en_tn_model = EnNormalizer()
- self.inflect_parser = inflect.engine()
- def _extract_text_token(self, text):
- if isinstance(text, Generator):
- logging.info('get tts_text generator, will return _extract_text_token_generator!')
- # NOTE add a dummy text_token_len for compatibility
- return self._extract_text_token_generator(text), torch.tensor([0], dtype=torch.int32).to(self.device)
- else:
- text_token = self.tokenizer.encode(text, allowed_special=self.allowed_special)
- text_token = torch.tensor([text_token], dtype=torch.int32).to(self.device)
- text_token_len = torch.tensor([text_token.shape[1]], dtype=torch.int32).to(self.device)
- return text_token, text_token_len
- def _extract_text_token_generator(self, text_generator):
- for text in text_generator:
- text_token, _ = self._extract_text_token(text)
- for i in range(text_token.shape[1]):
- yield text_token[:, i: i + 1]
- def _extract_speech_token(self, speech):
- assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s'
- feat = whisper.log_mel_spectrogram(speech, n_mels=128)
- speech_token = self.speech_tokenizer_session.run(None,
- {self.speech_tokenizer_session.get_inputs()[0].name:
- feat.detach().cpu().numpy(),
- self.speech_tokenizer_session.get_inputs()[1].name:
- np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
- speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
- speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
- return speech_token, speech_token_len
- def _extract_spk_embedding(self, speech):
- feat = kaldi.fbank(speech,
- num_mel_bins=80,
- dither=0,
- sample_frequency=16000)
- feat = feat - feat.mean(dim=0, keepdim=True)
- embedding = self.campplus_session.run(None,
- {self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
- embedding = torch.tensor([embedding]).to(self.device)
- return embedding
- def _extract_speech_feat(self, speech):
- speech_feat = self.feat_extractor(speech).squeeze(dim=0).transpose(0, 1).to(self.device)
- speech_feat = speech_feat.unsqueeze(dim=0)
- speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
- return speech_feat, speech_feat_len
- def text_normalize(self, text, split=True, text_frontend=True):
- if isinstance(text, Generator):
- logging.info('get tts_text generator, will skip text_normalize!')
- return [text]
- if text_frontend is False or text == '':
- return [text] if split is True else text
- text = text.strip()
- if self.use_ttsfrd:
- texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
- text = ''.join(texts)
- else:
- if contains_chinese(text):
- text = self.zh_tn_model.normalize(text)
- text = text.replace("\n", "")
- text = replace_blank(text)
- text = replace_corner_mark(text)
- text = text.replace(".", "。")
- text = text.replace(" - ", ",")
- text = remove_bracket(text)
- text = re.sub(r'[,,、]+$', '。', text)
- texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
- token_min_n=60, merge_len=20, comma_split=False))
- else:
- text = self.en_tn_model.normalize(text)
- text = spell_out_number(text, self.inflect_parser)
- texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
- token_min_n=60, merge_len=20, comma_split=False))
- texts = [i for i in texts if not is_only_punctuation(i)]
- return texts if split is True else text
- def frontend_sft(self, tts_text, spk_id):
- tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
- embedding = self.spk2info[spk_id]['embedding']
- model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
- return model_input
- def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate, zero_shot_spk_id):
- tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
- if zero_shot_spk_id == '':
- prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
- prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
- speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
- speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
- if resample_rate == 24000:
- # cosyvoice2, force speech_feat % speech_token = 2
- token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
- speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
- speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
- embedding = self._extract_spk_embedding(prompt_speech_16k)
- model_input = {'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
- 'llm_prompt_speech_token': speech_token, 'llm_prompt_speech_token_len': speech_token_len,
- 'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
- 'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
- 'llm_embedding': embedding, 'flow_embedding': embedding}
- else:
- model_input = self.spk2info[zero_shot_spk_id]
- model_input['text'] = tts_text_token
- model_input['text_len'] = tts_text_token_len
- return model_input
- def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate):
- model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k, resample_rate)
- # in cross lingual mode, we remove prompt in llm
- del model_input['prompt_text']
- del model_input['prompt_text_len']
- del model_input['llm_prompt_speech_token']
- del model_input['llm_prompt_speech_token_len']
- return model_input
- def frontend_instruct(self, tts_text, spk_id, instruct_text):
- model_input = self.frontend_sft(tts_text, spk_id)
- # in instruct mode, we remove spk_embedding in llm due to information leakage
- del model_input['llm_embedding']
- instruct_text_token, instruct_text_token_len = self._extract_text_token(instruct_text + '<endofprompt>')
- model_input['prompt_text'] = instruct_text_token
- model_input['prompt_text_len'] = instruct_text_token_len
- return model_input
- def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate):
- model_input = self.frontend_zero_shot(tts_text, instruct_text + '<|endofprompt|>', prompt_speech_16k, resample_rate)
- del model_input['llm_prompt_speech_token']
- del model_input['llm_prompt_speech_token_len']
- return model_input
- def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
- prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
- prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
- prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
- embedding = self._extract_spk_embedding(prompt_speech_16k)
- source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
- model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
- 'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
- 'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len,
- 'flow_embedding': embedding}
- return model_input
|