| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import torch
- import torch.nn as nn
- try:
- from torch.nn.utils.parametrizations import weight_norm
- except ImportError:
- from torch.nn.utils import weight_norm
- from cosyvoice.transformer.convolution import CausalConv1d
- class ConvRNNF0Predictor(nn.Module):
- def __init__(self,
- num_class: int = 1,
- in_channels: int = 80,
- cond_channels: int = 512
- ):
- super().__init__()
- self.num_class = num_class
- self.condnet = nn.Sequential(
- weight_norm(
- nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
- ),
- nn.ELU(),
- weight_norm(
- nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
- ),
- nn.ELU(),
- weight_norm(
- nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
- ),
- nn.ELU(),
- weight_norm(
- nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
- ),
- nn.ELU(),
- weight_norm(
- nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
- ),
- nn.ELU(),
- )
- self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- x = self.condnet(x)
- x = x.transpose(1, 2)
- return torch.abs(self.classifier(x).squeeze(-1))
- class CausalConvRNNF0Predictor(nn.Module):
- def __init__(self,
- num_class: int = 1,
- in_channels: int = 80,
- cond_channels: int = 512
- ):
- super().__init__()
- self.num_class = num_class
- self.condnet = nn.Sequential(
- weight_norm(
- CausalConv1d(in_channels, cond_channels, kernel_size=4, causal_type='right')
- ),
- nn.ELU(),
- weight_norm(
- CausalConv1d(cond_channels, cond_channels, kernel_size=3, causal_type='left')
- ),
- nn.ELU(),
- weight_norm(
- CausalConv1d(cond_channels, cond_channels, kernel_size=3, causal_type='left')
- ),
- nn.ELU(),
- weight_norm(
- CausalConv1d(cond_channels, cond_channels, kernel_size=3, causal_type='left')
- ),
- nn.ELU(),
- weight_norm(
- CausalConv1d(cond_channels, cond_channels, kernel_size=3, causal_type='left')
- ),
- nn.ELU(),
- )
- self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
- def forward(self, x: torch.Tensor, finalize: bool = True) -> torch.Tensor:
- if finalize is True:
- x = self.condnet[0](x)
- else:
- x = self.condnet[0](x[:, :, :-self.condnet[0].causal_padding], x[:, :, -self.condnet[0].causal_padding:])
- for i in range(1, len(self.condnet)):
- x = self.condnet[i](x)
- x = x.transpose(1, 2)
- return torch.abs(self.classifier(x).squeeze(-1))
|