| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- import torch
- import os
- import argparse
- from datasets import load_dataset
- from torch.utils.data import DataLoader
- import numpy as np
- import torchaudio
- import time
- from token2wav_dit import CosyVoice2_Token2Wav
- import soundfile as sf
- def collate_fn(batch):
- ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = [], [], [], []
- prompt_speech_tokens_list, prompt_text_list = [], []
- for i, item in enumerate(batch):
- generated_speech_tokens_list.append(item['target_audio_cosy2_tokens'])
- audio = torch.from_numpy(item['prompt_audio']['array']).float()
- prompt_audios_list.append(audio)
- prompt_audios_sample_rate.append(item['prompt_audio']['sampling_rate'])
- ids.append(item['id'])
- prompt_speech_tokens_list.append(item['prompt_audio_cosy2_tokens'])
- prompt_text_list.append(item['prompt_text'])
- return ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate, prompt_speech_tokens_list, prompt_text_list
- def get_args():
- parser = argparse.ArgumentParser()
- parser.add_argument("--enable-trt", action="store_true")
- parser.add_argument("--model-dir", type=str, default="./Step-Audio-2-mini/token2wav")
- parser.add_argument("--batch-size", type=int, default=1)
- parser.add_argument("--output-dir", type=str, default="generated_wavs")
- parser.add_argument("--huggingface-dataset-split", type=str, default="wenetspeech4tts")
- parser.add_argument("--dataset-name", type=str, default="yuekai/seed_tts_cosy2")
- parser.add_argument("--strategy", type=str, default="equal", choices=["equal", "exponential"])
- return parser.parse_args()
- def fake_generated_id_iter(generated_speech_tokens_list):
- for i in range(len(generated_speech_tokens_list)):
- yield generated_speech_tokens_list[i]
- if __name__ == "__main__":
- args = get_args()
-
- if not os.path.exists(args.output_dir):
- os.makedirs(args.output_dir)
- dataset_name = args.dataset_name
- dataset = load_dataset(dataset_name, split=args.huggingface_dataset_split, trust_remote_code=True)
- data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn, num_workers=0)
- token2wav_model = CosyVoice2_Token2Wav(model_dir=args.model_dir, enable_trt=args.enable_trt, streaming=True)
-
- flow_pre_lookahead_len = 3
- CHUNK_SIZE = 25
- token_frame_rate = 25
- OVERLAP_SIZE = 0
- warmup_times = 3
- for _ in range(warmup_times):
- start_time = time.time()
- total_forward_count = 0
- for batch in data_loader:
- tts_speech_list = []
- ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate, prompt_speech_tokens_list, prompt_text_list = batch
- id, generated_speech_tokens, prompt_audio, prompt_audio_sample_rate = ids[0], generated_speech_tokens_list[0], prompt_audios_list[0], prompt_audios_sample_rate[0]
- assert prompt_audio_sample_rate == 16000
- prompt_text = prompt_text_list[0]
- prompt_speech_tokens = prompt_speech_tokens_list[0]
- semantic_token_ids_arr, token_offset = [], 0
- flow_prompt_speech_token_len = len(prompt_speech_tokens)
-
- buffer = generated_speech_tokens
- output_wavs = []
- chunk_index = 0
- while True:
- if args.strategy == "equal":
- this_chunk_size = CHUNK_SIZE
- elif args.strategy == "exponential":
- this_chunk_size = token_frame_rate * (2 ** chunk_index)
- if len(buffer) >= this_chunk_size + token2wav_model.flow.pre_lookahead_len:
- wavs = token2wav_model.forward_streaming(buffer[:this_chunk_size + token2wav_model.flow.pre_lookahead_len], False, request_id=id, speaker_id=f"{id}", prompt_audio=prompt_audio, prompt_audio_sample_rate=prompt_audio_sample_rate)
- buffer = buffer[this_chunk_size - OVERLAP_SIZE:]
- output_wavs.append(wavs)
- total_forward_count += 1
- chunk_index += 1
- else:
- wavs = token2wav_model.forward_streaming(buffer, True, request_id=id, speaker_id=f"{id}", prompt_audio=prompt_audio, prompt_audio_sample_rate=prompt_audio_sample_rate)
- output_wavs.append(wavs)
- total_forward_count += 1
- # chunk_index += 1
- break
- for i, wav in enumerate(output_wavs):
- output_wavs[i] = wav.cpu().numpy().squeeze()
- audios = output_wavs
- reconstructed_audio = np.concatenate(audios)
- sf.write(os.path.join(args.output_dir, f"{id}.wav"), reconstructed_audio, 24000, "PCM_16")
- end_time = time.time()
- if _ == 0:
- token2wav_model.speaker_cache = {}
- print(f"Warmup time: {end_time - start_time} seconds")
- print("clear speaker cache")
- elif _ == 1:
- print(f"Cost time without speaker cache: {end_time - start_time} seconds")
- else:
- print(f"Cost time with speaker cache: {end_time - start_time} seconds")
- print(f"Total flow matching forward calls: {total_forward_count}")
|