export_jit.py 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import print_function
  15. import argparse
  16. import logging
  17. logging.getLogger('matplotlib').setLevel(logging.WARNING)
  18. import os
  19. import sys
  20. import torch
  21. ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
  22. sys.path.append('{}/../..'.format(ROOT_DIR))
  23. sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
  24. from cosyvoice.cli.cosyvoice import AutoModel
  25. from cosyvoice.utils.file_utils import logging
  26. def get_args():
  27. parser = argparse.ArgumentParser(description='export your model for deployment')
  28. parser.add_argument('--model_dir',
  29. type=str,
  30. default='pretrained_models/CosyVoice-300M',
  31. help='local path')
  32. args = parser.parse_args()
  33. print(args)
  34. return args
  35. def get_optimized_script(model, preserved_attrs=[]):
  36. script = torch.jit.script(model)
  37. if preserved_attrs != []:
  38. script = torch.jit.freeze(script, preserved_attrs=preserved_attrs)
  39. else:
  40. script = torch.jit.freeze(script)
  41. script = torch.jit.optimize_for_inference(script)
  42. return script
  43. def main():
  44. args = get_args()
  45. logging.basicConfig(level=logging.DEBUG,
  46. format='%(asctime)s %(levelname)s %(message)s')
  47. torch._C._jit_set_fusion_strategy([('STATIC', 1)])
  48. torch._C._jit_set_profiling_mode(False)
  49. torch._C._jit_set_profiling_executor(False)
  50. model = AutoModel(model_dir=args.model_dir)
  51. if model.__class__.__name__ == 'CosyVoice':
  52. # 1. export llm text_encoder
  53. llm_text_encoder = model.model.llm.text_encoder
  54. script = get_optimized_script(llm_text_encoder)
  55. script.save('{}/llm.text_encoder.fp32.zip'.format(args.model_dir))
  56. script = get_optimized_script(llm_text_encoder.half())
  57. script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir))
  58. logging.info('successfully export llm_text_encoder')
  59. # 2. export llm llm
  60. llm_llm = model.model.llm.llm
  61. script = get_optimized_script(llm_llm, ['forward_chunk'])
  62. script.save('{}/llm.llm.fp32.zip'.format(args.model_dir))
  63. script = get_optimized_script(llm_llm.half(), ['forward_chunk'])
  64. script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
  65. logging.info('successfully export llm_llm')
  66. # 3. export flow encoder
  67. flow_encoder = model.model.flow.encoder
  68. script = get_optimized_script(flow_encoder)
  69. script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
  70. script = get_optimized_script(flow_encoder.half())
  71. script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
  72. logging.info('successfully export flow_encoder')
  73. elif model.__class__.__name__ == 'CosyVoice2':
  74. # 1. export flow encoder
  75. flow_encoder = model.model.flow.encoder
  76. script = get_optimized_script(flow_encoder)
  77. script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
  78. script = get_optimized_script(flow_encoder.half())
  79. script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
  80. logging.info('successfully export flow_encoder')
  81. else:
  82. raise ValueError('unsupported model type')
  83. if __name__ == '__main__':
  84. main()