| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- # Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, hexisyztem@icloud.com)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import argparse
- import logging
- import os
- import sys
- logging.getLogger('matplotlib').setLevel(logging.WARNING)
- import onnxruntime as ort
- import numpy as np
- # try:
- # import tensorrt
- # import tensorrt as trt
- # except ImportError:
- # error_msg_zh = [
- # "step.1 下载 tensorrt .tar.gz 压缩包并解压,下载地址: https://developer.nvidia.com/tensorrt/download/10x",
- # "step.2 使用 tensorrt whl 包进行安装根据 python 版本对应进行安装,如 pip install ${TensorRT-Path}/python/tensorrt-10.2.0-cp38-none-linux_x86_64.whl",
- # "step.3 将 tensorrt 的 lib 路径添加进环境变量中,export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${TensorRT-Path}/lib/"
- # ]
- # print("\n".join(error_msg_zh))
- # sys.exit(1)
- import torch
- from cosyvoice.cli.cosyvoice import CosyVoice
- def calculate_onnx(onnx_file, x, mask, mu, t, spks, cond):
- providers = ['CUDAExecutionProvider']
- sess_options = ort.SessionOptions()
- providers = [
- 'CUDAExecutionProvider'
- ]
- # Load the ONNX model
- session = ort.InferenceSession(onnx_file, sess_options=sess_options, providers=providers)
-
- x_np = x.cpu().numpy()
- mask_np = mask.cpu().numpy()
- mu_np = mu.cpu().numpy()
- t_np = np.array(t.cpu())
- spks_np = spks.cpu().numpy()
- cond_np = cond.cpu().numpy()
- ort_inputs = {
- 'x': x_np,
- 'mask': mask_np,
- 'mu': mu_np,
- 't': t_np,
- 'spks': spks_np,
- 'cond': cond_np
- }
- output = session.run(None, ort_inputs)
- return output[0]
- # def calculate_tensorrt(trt_file, x, mask, mu, t, spks, cond):
- # trt.init_libnvinfer_plugins(None, "")
- # logger = trt.Logger(trt.Logger.WARNING)
- # runtime = trt.Runtime(logger)
- # with open(trt_file, 'rb') as f:
- # serialized_engine = f.read()
- # engine = runtime.deserialize_cuda_engine(serialized_engine)
- # context = engine.create_execution_context()
- # bs = x.shape[0]
- # hs = x.shape[1]
- # seq_len = x.shape[2]
- # ret = torch.zeros_like(x)
- # # Set input shapes for dynamic dimensions
- # context.set_input_shape("x", x.shape)
- # context.set_input_shape("mask", mask.shape)
- # context.set_input_shape("mu", mu.shape)
- # context.set_input_shape("t", t.shape)
- # context.set_input_shape("spks", spks.shape)
- # context.set_input_shape("cond", cond.shape)
- # # bindings = [x.data_ptr(), mask.data_ptr(), mu.data_ptr(), t.data_ptr(), spks.data_ptr(), cond.data_ptr(), ret.data_ptr()]
- # # names = ['x', 'mask', 'mu', 't', 'spks', 'cond', 'estimator_out']
- # #
- # # for i in range(len(bindings)):
- # # context.set_tensor_address(names[i], bindings[i])
- # #
- # # handle = torch.cuda.current_stream().cuda_stream
- # # context.execute_async_v3(stream_handle=handle)
- # # Create a list of bindings
- # bindings = [int(x.data_ptr()), int(mask.data_ptr()), int(mu.data_ptr()), int(t.data_ptr()), int(spks.data_ptr()), int(cond.data_ptr()), int(ret.data_ptr())]
- # # Execute the inference
- # context.execute_v2(bindings=bindings)
- # torch.cuda.synchronize()
- # return ret
- # def test_calculate_value(estimator, onnx_file, trt_file, dummy_input, args):
- # torch_output = estimator.forward(**dummy_input).cpu().detach().numpy()
- # onnx_output = calculate_onnx(onnx_file, **dummy_input)
- # tensorrt_output = calculate_tensorrt(trt_file, **dummy_input).cpu().detach().numpy()
- # atol = 2e-3 # Absolute tolerance
- # rtol = 1e-4 # Relative tolerance
- # print(f"args.export_half: {args.export_half}, args.model_dir: {args.model_dir}")
- # print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
- # print("torch_output diff with onnx_output: ", )
- # print(f"compare with atol: {atol}, rtol: {rtol} ", np.allclose(torch_output, onnx_output, atol, rtol))
- # print(f"max diff value: ", np.max(np.fabs(torch_output - onnx_output)))
- # print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
- # print("torch_output diff with tensorrt_output: ")
- # print(f"compare with atol: {atol}, rtol: {rtol} ", np.allclose(torch_output, tensorrt_output, atol, rtol))
- # print(f"max diff value: ", np.max(np.fabs(torch_output - tensorrt_output)))
- # print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
- # print("onnx_output diff with tensorrt_output: ")
- # print(f"compare with atol: {atol}, rtol: {rtol} ", np.allclose(onnx_output, tensorrt_output, atol, rtol))
- # print(f"max diff value: ", np.max(np.fabs(onnx_output - tensorrt_output)))
- # print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
- def get_args():
- parser = argparse.ArgumentParser(description='Export your model for deployment')
- parser.add_argument('--model_dir', type=str, default='pretrained_models/CosyVoice-300M', help='Local path to the model directory')
- parser.add_argument('--export_half', type=str, choices=['True', 'False'], default='False', help='Export with half precision (FP16)')
- # parser.add_argument('--trt_max_len', type=int, default=8192, help='Export max len')
- parser.add_argument('--exec_export', type=str, choices=['True', 'False'], default='True', help='Exec export')
-
- args = parser.parse_args()
- args.export_half = args.export_half == 'True'
- args.exec_export = args.exec_export == 'True'
- print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$")
- print(args)
- return args
- def main():
- args = get_args()
- cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False)
- estimator = cosyvoice.model.flow.decoder.estimator
- dtype = torch.float32 if not args.export_half else torch.float16
- device = torch.device("cuda")
- batch_size = 1
- seq_len = 256
- out_channels = cosyvoice.model.flow.decoder.estimator.out_channels
- x = torch.rand((batch_size, out_channels, seq_len), dtype=dtype, device=device)
- mask = torch.ones((batch_size, 1, seq_len), dtype=dtype, device=device)
- mu = torch.rand((batch_size, out_channels, seq_len), dtype=dtype, device=device)
- t = torch.rand((batch_size, ), dtype=dtype, device=device)
- spks = torch.rand((batch_size, out_channels), dtype=dtype, device=device)
- cond = torch.rand((batch_size, out_channels, seq_len), dtype=dtype, device=device)
- onnx_file_name = 'estimator_fp32.onnx' if not args.export_half else 'estimator_fp16.onnx'
- onnx_file_path = os.path.join(args.model_dir, onnx_file_name)
- dummy_input = (x, mask, mu, t, spks, cond)
- estimator = estimator.to(dtype)
- if args.exec_export:
- torch.onnx.export(
- estimator,
- dummy_input,
- onnx_file_path,
- export_params=True,
- opset_version=18,
- do_constant_folding=True,
- input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
- output_names=['estimator_out'],
- dynamic_axes={
- 'x': {2: 'seq_len'},
- 'mask': {2: 'seq_len'},
- 'mu': {2: 'seq_len'},
- 'cond': {2: 'seq_len'},
- 'estimator_out': {2: 'seq_len'},
- }
- )
- # tensorrt_path = os.environ.get('tensorrt_root_dir')
- # if not tensorrt_path:
- # raise EnvironmentError("Please set the 'tensorrt_root_dir' environment variable.")
- # if not os.path.isdir(tensorrt_path):
- # raise FileNotFoundError(f"The directory {tensorrt_path} does not exist.")
- # trt_lib_path = os.path.join(tensorrt_path, "lib")
- # if trt_lib_path not in os.environ.get('LD_LIBRARY_PATH', ''):
- # print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
- # os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
- # trt_file_name = 'estimator_fp32.plan' if not args.export_half else 'estimator_fp16.plan'
- # trt_file_path = os.path.join(args.model_dir, trt_file_name)
- # trtexec_bin = os.path.join(tensorrt_path, 'bin/trtexec')
- # trt_max_len = args.trt_max_len
- # trtexec_cmd = f"{trtexec_bin} --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
- # f"--minShapes=x:1x{out_channels}x1,mask:1x1x1,mu:1x{out_channels}x1,t:1,spks:1x{out_channels},cond:1x{out_channels}x1 " \
- # f"--maxShapes=x:1x{out_channels}x{trt_max_len},mask:1x1x{trt_max_len},mu:1x{out_channels}x{trt_max_len},t:1,spks:1x{out_channels},cond:1x{out_channels}x{trt_max_len} " + \
- # ("--fp16" if args.export_half else "")
-
- # print("execute ", trtexec_cmd)
- # if args.exec_export:
- # os.system(trtexec_cmd)
- # dummy_input = {'x': x, 'mask': mask, 'mu': mu, 't': t, 'spks': spks, 'cond': cond}
- # test_calculate_value(estimator, onnx_file_path, trt_file_path, dummy_input, args)
- if __name__ == "__main__":
- main()
|