train.py 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175
  1. # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import print_function
  15. import argparse
  16. import datetime
  17. import logging
  18. logging.getLogger('matplotlib').setLevel(logging.WARNING)
  19. from copy import deepcopy
  20. import os
  21. import torch
  22. import torch.distributed as dist
  23. import deepspeed
  24. from hyperpyyaml import load_hyperpyyaml
  25. from torch.distributed.elastic.multiprocessing.errors import record
  26. from cosyvoice.utils.executor import Executor
  27. from cosyvoice.utils.train_utils import (
  28. init_distributed,
  29. init_dataset_and_dataloader,
  30. init_optimizer_and_scheduler,
  31. init_summarywriter, save_model,
  32. wrap_cuda_model, check_modify_and_save_config)
  33. def get_args():
  34. parser = argparse.ArgumentParser(description='training your network')
  35. parser.add_argument('--train_engine',
  36. default='torch_ddp',
  37. choices=['torch_ddp', 'deepspeed'],
  38. help='Engine for paralleled training')
  39. parser.add_argument('--model', required=True, help='model which will be trained')
  40. parser.add_argument('--config', required=True, help='config file')
  41. parser.add_argument('--train_data', required=True, help='train data file')
  42. parser.add_argument('--cv_data', required=True, help='cv data file')
  43. parser.add_argument('--qwen_pretrain_path', required=False, help='qwen pretrain path')
  44. parser.add_argument('--checkpoint', help='checkpoint model')
  45. parser.add_argument('--model_dir', required=True, help='save model dir')
  46. parser.add_argument('--tensorboard_dir',
  47. default='tensorboard',
  48. help='tensorboard log dir')
  49. parser.add_argument('--ddp.dist_backend',
  50. dest='dist_backend',
  51. default='nccl',
  52. choices=['nccl', 'gloo'],
  53. help='distributed backend')
  54. parser.add_argument('--num_workers',
  55. default=0,
  56. type=int,
  57. help='num of subprocess workers for reading')
  58. parser.add_argument('--prefetch',
  59. default=100,
  60. type=int,
  61. help='prefetch number')
  62. parser.add_argument('--pin_memory',
  63. action='store_true',
  64. default=False,
  65. help='Use pinned memory buffers used for reading')
  66. parser.add_argument('--use_amp',
  67. action='store_true',
  68. default=False,
  69. help='Use automatic mixed precision training')
  70. parser.add_argument('--deepspeed.save_states',
  71. dest='save_states',
  72. default='model_only',
  73. choices=['model_only', 'model+optimizer'],
  74. help='save model/optimizer states')
  75. parser.add_argument('--timeout',
  76. default=60,
  77. type=int,
  78. help='timeout (in seconds) of cosyvoice_join.')
  79. parser = deepspeed.add_config_arguments(parser)
  80. args = parser.parse_args()
  81. return args
  82. @record
  83. def main():
  84. args = get_args()
  85. logging.basicConfig(level=logging.DEBUG,
  86. format='%(asctime)s %(levelname)s %(message)s')
  87. # gan train has some special initialization logic
  88. gan = True if args.model == 'hifigan' else False
  89. override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
  90. if gan is True:
  91. override_dict.pop('hift')
  92. try:
  93. with open(args.config, 'r') as f:
  94. configs = load_hyperpyyaml(f, overrides={**override_dict, 'qwen_pretrain_path': args.qwen_pretrain_path})
  95. except Exception:
  96. with open(args.config, 'r') as f:
  97. configs = load_hyperpyyaml(f, overrides=override_dict)
  98. if gan is True:
  99. configs['train_conf'] = configs['train_conf_gan']
  100. configs['train_conf'].update(vars(args))
  101. # Init env for ddp
  102. init_distributed(args)
  103. # Get dataset & dataloader
  104. train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
  105. init_dataset_and_dataloader(args, configs, gan)
  106. # Do some sanity checks and save config to arsg.model_dir
  107. configs = check_modify_and_save_config(args, configs)
  108. # Tensorboard summary
  109. writer = init_summarywriter(args)
  110. # load checkpoint
  111. model = configs[args.model]
  112. start_step, start_epoch = 0, -1
  113. if args.checkpoint is not None:
  114. if os.path.exists(args.checkpoint):
  115. state_dict = torch.load(args.checkpoint, map_location='cpu')
  116. model.load_state_dict(state_dict, strict=False)
  117. if 'step' in state_dict:
  118. start_step = state_dict['step']
  119. if 'epoch' in state_dict:
  120. start_epoch = state_dict['epoch']
  121. else:
  122. logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
  123. # Dispatch model from cpu to gpu
  124. model = wrap_cuda_model(args, model)
  125. # Get optimizer & scheduler
  126. model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan)
  127. scheduler.set_step(start_step)
  128. if scheduler_d is not None:
  129. scheduler_d.set_step(start_step)
  130. # Save init checkpoints
  131. info_dict = deepcopy(configs['train_conf'])
  132. info_dict['step'] = start_step
  133. info_dict['epoch'] = start_epoch
  134. save_model(model, 'init', info_dict)
  135. # Get executor
  136. executor = Executor(gan=gan)
  137. executor.step = start_step
  138. # Init scaler, used for pytorch amp mixed precision training
  139. scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
  140. print('start step {} start epoch {}'.format(start_step, start_epoch))
  141. # Start training loop
  142. for epoch in range(start_epoch + 1, info_dict['max_epoch']):
  143. executor.epoch = epoch
  144. train_dataset.set_epoch(epoch)
  145. dist.barrier()
  146. group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
  147. if gan is True:
  148. executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
  149. writer, info_dict, scaler, group_join)
  150. else:
  151. executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join)
  152. dist.destroy_process_group(group_join)
  153. if __name__ == '__main__':
  154. main()