|
|
@@ -13,6 +13,9 @@
|
|
|
# limitations under the License.
|
|
|
import torch
|
|
|
import numpy as np
|
|
|
+import threading
|
|
|
+import time
|
|
|
+from contextlib import nullcontext
|
|
|
|
|
|
|
|
|
class CosyVoiceModel:
|
|
|
@@ -25,10 +28,13 @@ class CosyVoiceModel:
|
|
|
self.llm = llm
|
|
|
self.flow = flow
|
|
|
self.hift = hift
|
|
|
- self.stream_win_len = 60
|
|
|
- self.stream_hop_len = 50
|
|
|
- self.overlap = 4395 # 10 token equals 4395 sample point
|
|
|
+ self.stream_win_len = 60 * 4
|
|
|
+ self.stream_hop_len = 50 * 4
|
|
|
+ self.overlap = 4395 * 4 # 10 token equals 4395 sample point
|
|
|
self.window = np.hamming(2 * self.overlap)
|
|
|
+ self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
|
|
+ self.flow_hift_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
|
|
+ self.lock = threading.Lock()
|
|
|
|
|
|
def load(self, llm_model, flow_model, hift_model):
|
|
|
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
|
|
|
@@ -38,13 +44,8 @@ class CosyVoiceModel:
|
|
|
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
|
|
|
self.hift.to(self.device).eval()
|
|
|
|
|
|
- def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
|
|
- prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
|
|
|
- llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
|
|
- flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
|
|
- prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32), stream=False):
|
|
|
- if stream is True:
|
|
|
- tts_speech_token, cache_speech = [], None
|
|
|
+ def llm_job(self, text, text_len, prompt_text, prompt_text_len, llm_prompt_speech_token, llm_prompt_speech_token_len, llm_embedding):
|
|
|
+ with self.llm_context:
|
|
|
for i in self.llm.inference(text=text.to(self.device),
|
|
|
text_len=text_len.to(self.device),
|
|
|
prompt_text=prompt_text.to(self.device),
|
|
|
@@ -56,10 +57,56 @@ class CosyVoiceModel:
|
|
|
sampling=25,
|
|
|
max_token_text_ratio=30,
|
|
|
min_token_text_ratio=3,
|
|
|
- stream=stream):
|
|
|
- tts_speech_token.append(i)
|
|
|
- if len(tts_speech_token) == self.stream_win_len:
|
|
|
- this_tts_speech_token = torch.concat(tts_speech_token, dim=1)
|
|
|
+ stream=True):
|
|
|
+ self.tts_speech_token.append(i)
|
|
|
+ self.llm_end = True
|
|
|
+
|
|
|
+ def token2wav(self, token, prompt_token, prompt_token_len, prompt_feat, prompt_feat_len, embedding):
|
|
|
+ with self.flow_hift_context:
|
|
|
+ tts_mel = self.flow.inference(token=token.to(self.device),
|
|
|
+ token_len=torch.tensor([token.size(1)], dtype=torch.int32).to(self.device),
|
|
|
+ prompt_token=prompt_token.to(self.device),
|
|
|
+ prompt_token_len=prompt_token_len.to(self.device),
|
|
|
+ prompt_feat=prompt_feat.to(self.device),
|
|
|
+ prompt_feat_len=prompt_feat_len.to(self.device),
|
|
|
+ embedding=embedding.to(self.device))
|
|
|
+ tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
|
|
+ return tts_speech
|
|
|
+
|
|
|
+ def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
|
|
+ prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
|
|
|
+ llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
|
|
+ flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
|
|
+ prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32), stream=False):
|
|
|
+ if stream is True:
|
|
|
+ self.tts_speech_token, self.llm_end, cache_speech = [], False, None
|
|
|
+ p = threading.Thread(target=self.llm_job, args=(text.to(self.device), text_len.to(self.device), prompt_text.to(self.device), prompt_text_len.to(self.device),
|
|
|
+ llm_prompt_speech_token.to(self.device), llm_prompt_speech_token_len.to(self.device), llm_embedding.to(self.device)))
|
|
|
+ p.start()
|
|
|
+ while True:
|
|
|
+ time.sleep(0.1)
|
|
|
+ if len(self.tts_speech_token) >= self.stream_win_len:
|
|
|
+ this_tts_speech_token = torch.concat(self.tts_speech_token[:self.stream_win_len], dim=1)
|
|
|
+ with self.flow_hift_context:
|
|
|
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
|
+ prompt_token=flow_prompt_speech_token.to(self.device),
|
|
|
+ prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
|
|
+ prompt_feat=prompt_speech_feat.to(self.device),
|
|
|
+ prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
|
|
+ embedding=flow_embedding.to(self.device))
|
|
|
+ # fade in/out if necessary
|
|
|
+ if cache_speech is not None:
|
|
|
+ this_tts_speech[:, :self.overlap] = this_tts_speech[:, :self.overlap] * self.window[:self.overlap] + cache_speech * self.window[-self.overlap:]
|
|
|
+ yield {'tts_speech': this_tts_speech[:, :-self.overlap]}
|
|
|
+ cache_speech = this_tts_speech[:, -self.overlap:]
|
|
|
+ with self.lock:
|
|
|
+ self.tts_speech_token = self.tts_speech_token[self.stream_hop_len:]
|
|
|
+ if self.llm_end is True:
|
|
|
+ break
|
|
|
+ # deal with remain tokens
|
|
|
+ if cache_speech is None or len(self.tts_speech_token) > self.stream_win_len - self.stream_hop_len:
|
|
|
+ this_tts_speech_token = torch.concat(self.tts_speech_token, dim=1)
|
|
|
+ with self.flow_hift_context:
|
|
|
this_tts_mel = self.flow.inference(token=this_tts_speech_token,
|
|
|
token_len=torch.tensor([this_tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
|
|
prompt_token=flow_prompt_speech_token.to(self.device),
|
|
|
@@ -68,29 +115,14 @@ class CosyVoiceModel:
|
|
|
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
|
|
embedding=flow_embedding.to(self.device))
|
|
|
this_tts_speech = self.hift.inference(mel=this_tts_mel).cpu()
|
|
|
- # fade in/out if necessary
|
|
|
- if cache_speech is not None:
|
|
|
- this_tts_speech[:, :self.overlap] = this_tts_speech[:, :self.overlap] * self.window[:self.overlap] + cache_speech * self.window[-self.overlap:]
|
|
|
- yield {'tts_speech': this_tts_speech[:, :-self.overlap]}
|
|
|
- cache_speech = this_tts_speech[:, -self.overlap:]
|
|
|
- tts_speech_token = tts_speech_token[-(self.stream_win_len - self.stream_hop_len):]
|
|
|
- # deal with remain tokens
|
|
|
- if cache_speech is None or len(tts_speech_token) > self.stream_win_len - self.stream_hop_len:
|
|
|
- this_tts_speech_token = torch.concat(tts_speech_token, dim=1)
|
|
|
- this_tts_mel = self.flow.inference(token=this_tts_speech_token,
|
|
|
- token_len=torch.tensor([this_tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
|
|
- prompt_token=flow_prompt_speech_token.to(self.device),
|
|
|
- prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
|
|
- prompt_feat=prompt_speech_feat.to(self.device),
|
|
|
- prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
|
|
- embedding=flow_embedding.to(self.device))
|
|
|
- this_tts_speech = self.hift.inference(mel=this_tts_mel).cpu()
|
|
|
if cache_speech is not None:
|
|
|
this_tts_speech[:, :self.overlap] = this_tts_speech[:, :self.overlap] * self.window[:self.overlap] + cache_speech * self.window[-self.overlap:]
|
|
|
yield {'tts_speech': this_tts_speech}
|
|
|
else:
|
|
|
- assert len(tts_speech_token) == self.stream_win_len - self.stream_hop_len, 'tts_speech_token not equal to {}'.format(self.stream_win_len - self.stream_hop_len)
|
|
|
+ assert len(self.tts_speech_token) == self.stream_win_len - self.stream_hop_len, 'tts_speech_token not equal to {}'.format(self.stream_win_len - self.stream_hop_len)
|
|
|
yield {'tts_speech': cache_speech}
|
|
|
+ p.join()
|
|
|
+ torch.cuda.synchronize()
|
|
|
else:
|
|
|
tts_speech_token = []
|
|
|
for i in self.llm.inference(text=text.to(self.device),
|