|
|
@@ -43,7 +43,6 @@ class CosyVoiceModel:
|
|
|
self.stream_scale_factor = 1
|
|
|
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
|
|
|
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
|
|
- self.flow_hift_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
|
|
self.lock = threading.Lock()
|
|
|
# dict used to store session related variable
|
|
|
self.tts_speech_token_dict = {}
|
|
|
@@ -93,32 +92,31 @@ class CosyVoiceModel:
|
|
|
self.llm_end_dict[uuid] = True
|
|
|
|
|
|
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False):
|
|
|
- with self.flow_hift_context:
|
|
|
- tts_mel = self.flow.inference(token=token.to(self.device),
|
|
|
- token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
|
|
- prompt_token=prompt_token.to(self.device),
|
|
|
- prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
|
|
- prompt_feat=prompt_feat.to(self.device),
|
|
|
- prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
|
|
- embedding=embedding.to(self.device))
|
|
|
- # mel overlap fade in out
|
|
|
- if self.mel_overlap_dict[uuid] is not None:
|
|
|
- tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
|
|
|
- # append hift cache
|
|
|
- if self.hift_cache_dict[uuid] is not None:
|
|
|
- hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
|
|
- tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
|
|
- else:
|
|
|
- hift_cache_source = torch.zeros(1, 1, 0)
|
|
|
- # keep overlap mel and hift cache
|
|
|
- if finalize is False:
|
|
|
- self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
|
|
- tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
|
|
- tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
|
|
- self.hift_cache_dict[uuid] = {'source': tts_source[:, :, -self.source_cache_len:], 'mel': tts_mel[:, :, -self.mel_cache_len:]}
|
|
|
- tts_speech = tts_speech[:, :-self.source_cache_len]
|
|
|
- else:
|
|
|
- tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
|
|
+ tts_mel = self.flow.inference(token=token.to(self.device),
|
|
|
+ token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
|
|
+ prompt_token=prompt_token.to(self.device),
|
|
|
+ prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
|
|
+ prompt_feat=prompt_feat.to(self.device),
|
|
|
+ prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
|
|
+ embedding=embedding.to(self.device))
|
|
|
+ # mel overlap fade in out
|
|
|
+ if self.mel_overlap_dict[uuid] is not None:
|
|
|
+ tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
|
|
|
+ # append hift cache
|
|
|
+ if self.hift_cache_dict[uuid] is not None:
|
|
|
+ hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
|
|
+ tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
|
|
+ else:
|
|
|
+ hift_cache_source = torch.zeros(1, 1, 0)
|
|
|
+ # keep overlap mel and hift cache
|
|
|
+ if finalize is False:
|
|
|
+ self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
|
|
+ tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
|
|
+ tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
|
|
+ self.hift_cache_dict[uuid] = {'source': tts_source[:, :, -self.source_cache_len:], 'mel': tts_mel[:, :, -self.mel_cache_len:]}
|
|
|
+ tts_speech = tts_speech[:, :-self.source_cache_len]
|
|
|
+ else:
|
|
|
+ tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
|
|
return tts_speech
|
|
|
|
|
|
def inference(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
|
|
@@ -139,13 +137,12 @@ class CosyVoiceModel:
|
|
|
time.sleep(0.1)
|
|
|
if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
|
|
this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len], dim=1)
|
|
|
- with self.flow_hift_context:
|
|
|
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
|
- prompt_token=flow_prompt_speech_token,
|
|
|
- prompt_feat=prompt_speech_feat,
|
|
|
- embedding=flow_embedding,
|
|
|
- uuid=this_uuid,
|
|
|
- finalize=False)
|
|
|
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
|
+ prompt_token=flow_prompt_speech_token,
|
|
|
+ prompt_feat=prompt_speech_feat,
|
|
|
+ embedding=flow_embedding,
|
|
|
+ uuid=this_uuid,
|
|
|
+ finalize=False)
|
|
|
yield {'tts_speech': this_tts_speech.cpu()}
|
|
|
with self.lock:
|
|
|
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
|
|
@@ -156,30 +153,26 @@ class CosyVoiceModel:
|
|
|
p.join()
|
|
|
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
|
|
this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
|
|
|
- with self.flow_hift_context:
|
|
|
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
|
- prompt_token=flow_prompt_speech_token,
|
|
|
- prompt_feat=prompt_speech_feat,
|
|
|
- embedding=flow_embedding,
|
|
|
- uuid=this_uuid,
|
|
|
- finalize=True)
|
|
|
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
|
+ prompt_token=flow_prompt_speech_token,
|
|
|
+ prompt_feat=prompt_speech_feat,
|
|
|
+ embedding=flow_embedding,
|
|
|
+ uuid=this_uuid,
|
|
|
+ finalize=True)
|
|
|
yield {'tts_speech': this_tts_speech.cpu()}
|
|
|
else:
|
|
|
# deal with all tokens
|
|
|
p.join()
|
|
|
this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
|
|
|
- with self.flow_hift_context:
|
|
|
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
|
- prompt_token=flow_prompt_speech_token,
|
|
|
- prompt_feat=prompt_speech_feat,
|
|
|
- embedding=flow_embedding,
|
|
|
- uuid=this_uuid,
|
|
|
- finalize=True)
|
|
|
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
|
+ prompt_token=flow_prompt_speech_token,
|
|
|
+ prompt_feat=prompt_speech_feat,
|
|
|
+ embedding=flow_embedding,
|
|
|
+ uuid=this_uuid,
|
|
|
+ finalize=True)
|
|
|
yield {'tts_speech': this_tts_speech.cpu()}
|
|
|
with self.lock:
|
|
|
self.tts_speech_token_dict.pop(this_uuid)
|
|
|
self.llm_end_dict.pop(this_uuid)
|
|
|
self.mel_overlap_dict.pop(this_uuid)
|
|
|
self.hift_cache_dict.pop(this_uuid)
|
|
|
- if torch.cuda.is_available():
|
|
|
- torch.cuda.synchronize()
|