|
@@ -20,6 +20,7 @@ import torch
|
|
|
import torchaudio
|
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
|
import torch.nn.functional as F
|
|
|
+import pyworld as pw
|
|
|
|
|
|
|
|
|
AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
|
|
@@ -178,7 +179,7 @@ def compute_fbank(data,
|
|
|
yield sample
|
|
|
|
|
|
|
|
|
-def compute_f0(data, pitch_extractor, mode='train'):
|
|
|
+def compute_f0(data, sample_rate, hop_size, mode='train'):
|
|
|
""" Extract f0
|
|
|
|
|
|
Args:
|
|
@@ -187,15 +188,19 @@ def compute_f0(data, pitch_extractor, mode='train'):
|
|
|
Returns:
|
|
|
Iterable[{key, feat, label}]
|
|
|
"""
|
|
|
+ frame_period = hop_size * 1000 / sample_rate
|
|
|
for sample in data:
|
|
|
assert 'sample_rate' in sample
|
|
|
assert 'speech' in sample
|
|
|
assert 'utt' in sample
|
|
|
assert 'text_token' in sample
|
|
|
waveform = sample['speech']
|
|
|
- mat = pitch_extractor(waveform).transpose(1, 2)
|
|
|
- mat = F.interpolate(mat, size=sample['speech_feat'].shape[0], mode='linear')
|
|
|
- sample['pitch_feat'] = mat[0, 0]
|
|
|
+ _f0, t = pw.harvest(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period)
|
|
|
+ if sum(_f0 != 0) < 5: # this happens when the algorithm fails
|
|
|
+ _f0, t = pw.dio(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period) # if harvest fails, try dio
|
|
|
+ f0 = pw.stonemask(waveform.squeeze(dim=0).numpy().astype('double'), _f0, t, sample_rate)
|
|
|
+ f0 = F.interpolate(torch.from_numpy(f0).view(1, 1, -1), size=sample['speech_feat'].shape[0], mode='linear').view(-1)
|
|
|
+ sample['pitch_feat'] = f0
|
|
|
yield sample
|
|
|
|
|
|
|