Explorar o código

Merge pull request #356 from MiXaiLL76/main

Implemented fast processing of extract_embedding
Xiang Lyu hai 1 ano
pai
achega
2665b06e95
Modificáronse 1 ficheiros con 48 adicións e 24 borrados
  1. 48 24
      tools/extract_embedding.py

+ 48 - 24
tools/extract_embedding.py

@@ -13,58 +13,82 @@
 # See the License for the specific language governing permissions and
 # limitations under the License.
 import argparse
+import os
+from concurrent.futures import ThreadPoolExecutor
+
+import onnxruntime
 import torch
 import torchaudio
-from tqdm import tqdm
-import onnxruntime
 import torchaudio.compliance.kaldi as kaldi
+from tqdm import tqdm
+from itertools import repeat
+
+
+def extract_embedding(utt: str, wav_file: str, ort_session: onnxruntime.InferenceSession):
+    audio, sample_rate = torchaudio.load(wav_file)
+    if sample_rate != 16000:
+        audio = torchaudio.transforms.Resample(
+            orig_freq=sample_rate, new_freq=16000
+        )(audio)
+    feat = kaldi.fbank(audio, num_mel_bins=80, dither=0, sample_frequency=16000)
+    feat = feat - feat.mean(dim=0, keepdim=True)
+    embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
+    return (utt, embedding)
 
 
 def main(args):
     utt2wav, utt2spk = {}, {}
-    with open('{}/wav.scp'.format(args.dir)) as f:
+    with open("{}/wav.scp".format(args.dir)) as f:
         for l in f:
-            l = l.replace('\n', '').split()
+            l = l.replace("\n", "").split()
             utt2wav[l[0]] = l[1]
-    with open('{}/utt2spk'.format(args.dir)) as f:
+    with open("{}/utt2spk".format(args.dir)) as f:
         for l in f:
-            l = l.replace('\n', '').split()
+            l = l.replace("\n", "").split()
             utt2spk[l[0]] = l[1]
 
+    assert os.path.exists(args.onnx_path), "onnx_path not exists"
+
     option = onnxruntime.SessionOptions()
-    option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
+    option.graph_optimization_level = (
+        onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
+    )
     option.intra_op_num_threads = 1
     providers = ["CPUExecutionProvider"]
-    ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
+    ort_session = onnxruntime.InferenceSession(
+        args.onnx_path, sess_options=option, providers=providers
+    )
+
+    all_utt = utt2wav.keys()
+
+    with ThreadPoolExecutor(max_workers=args.num_thread) as executor:
+        results = list(
+            tqdm(
+                executor.map(extract_embedding, all_utt, [utt2wav[utt] for utt in all_utt], repeat(ort_session)),
+                total=len(utt2wav),
+                desc="Process data: "
+            )
+        )
 
     utt2embedding, spk2embedding = {}, {}
-    for utt in tqdm(utt2wav.keys()):
-        audio, sample_rate = torchaudio.load(utt2wav[utt])
-        if sample_rate != 16000:
-            audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
-        feat = kaldi.fbank(audio,
-                           num_mel_bins=80,
-                           dither=0,
-                           sample_frequency=16000)
-        feat = feat - feat.mean(dim=0, keepdim=True)
-        embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
+    for utt, embedding in results:
         utt2embedding[utt] = embedding
         spk = utt2spk[utt]
         if spk not in spk2embedding:
             spk2embedding[spk] = []
         spk2embedding[spk].append(embedding)
+
     for k, v in spk2embedding.items():
         spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
 
-    torch.save(utt2embedding, '{}/utt2embedding.pt'.format(args.dir))
-    torch.save(spk2embedding, '{}/spk2embedding.pt'.format(args.dir))
+    torch.save(utt2embedding, "{}/utt2embedding.pt".format(args.dir))
+    torch.save(spk2embedding, "{}/spk2embedding.pt".format(args.dir))
 
 
 if __name__ == "__main__":
     parser = argparse.ArgumentParser()
-    parser.add_argument('--dir',
-                        type=str)
-    parser.add_argument('--onnx_path',
-                        type=str)
+    parser.add_argument("--dir", type=str)
+    parser.add_argument("--onnx_path", type=str)
+    parser.add_argument("--num_thread", type=int, default=8)
     args = parser.parse_args()
     main(args)