lyuxiang.lx 1 år sedan
förälder
incheckning
49015f63e6

+ 15 - 4
cosyvoice/cli/cosyvoice.py

@@ -25,6 +25,7 @@ class CosyVoice:
 
     def __init__(self, model_dir, load_jit=True, load_onnx=False):
         instruct = True if '-Instruct' in model_dir else False
+        vc = True if '-VC' in model_dir else False
         self.model_dir = model_dir
         if not os.path.exists(model_dir):
             model_dir = snapshot_download(model_dir)
@@ -36,6 +37,7 @@ class CosyVoice:
                                           '{}/speech_tokenizer_v1.onnx'.format(model_dir),
                                           '{}/spk2info.pt'.format(model_dir),
                                           instruct,
+                                          vc,
                                           configs['allowed_special'])
         self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
         self.model.load('{}/llm.pt'.format(model_dir),
@@ -58,7 +60,7 @@ class CosyVoice:
             model_input = self.frontend.frontend_sft(i, spk_id)
             start_time = time.time()
             logging.info('synthesis text {}'.format(i))
-            for model_output in self.model.inference(**model_input, stream=stream, speed=speed):
+            for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
                 speech_len = model_output['tts_speech'].shape[1] / 22050
                 logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
                 yield model_output
@@ -70,7 +72,7 @@ class CosyVoice:
             model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
             start_time = time.time()
             logging.info('synthesis text {}'.format(i))
-            for model_output in self.model.inference(**model_input, stream=stream, speed=speed):
+            for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
                 speech_len = model_output['tts_speech'].shape[1] / 22050
                 logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
                 yield model_output
@@ -83,7 +85,7 @@ class CosyVoice:
             model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
             start_time = time.time()
             logging.info('synthesis text {}'.format(i))
-            for model_output in self.model.inference(**model_input, stream=stream, speed=speed):
+            for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
                 speech_len = model_output['tts_speech'].shape[1] / 22050
                 logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
                 yield model_output
@@ -97,8 +99,17 @@ class CosyVoice:
             model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
             start_time = time.time()
             logging.info('synthesis text {}'.format(i))
-            for model_output in self.model.inference(**model_input, stream=stream, speed=speed):
+            for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
                 speech_len = model_output['tts_speech'].shape[1] / 22050
                 logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
                 yield model_output
                 start_time = time.time()
+
+    def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
+        model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k)
+        start_time = time.time()
+        for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
+            speech_len = model_output['tts_speech'].shape[1] / 22050
+            logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
+            yield model_output
+            start_time = time.time()

+ 16 - 0
cosyvoice/cli/frontend.py

@@ -42,6 +42,7 @@ class CosyVoiceFrontEnd:
                  speech_tokenizer_model: str,
                  spk2info: str = '',
                  instruct: bool = False,
+                 vc: bool = False,
                  allowed_special: str = 'all'):
         self.tokenizer = get_tokenizer()
         self.feat_extractor = feat_extractor
@@ -55,7 +56,10 @@ class CosyVoiceFrontEnd:
                                                                                 "CPUExecutionProvider"])
         if os.path.exists(spk2info):
             self.spk2info = torch.load(spk2info, map_location=self.device)
+        else:
+            self.spk2info = {}
         self.instruct = instruct
+        self.vc = vc
         self.allowed_special = allowed_special
         self.inflect_parser = inflect.engine()
         self.use_ttsfrd = use_ttsfrd
@@ -172,3 +176,15 @@ class CosyVoiceFrontEnd:
         model_input['prompt_text'] = instruct_text_token
         model_input['prompt_text_len'] = instruct_text_token_len
         return model_input
+
+    def frontend_vc(self, source_speech_16k, prompt_speech_16k):
+        prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
+        prompt_speech_22050 = torchaudio.transforms.Resample(orig_freq=16000, new_freq=22050)(prompt_speech_16k)
+        prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_22050)
+        embedding = self._extract_spk_embedding(prompt_speech_16k)
+        source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
+        model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
+                       'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
+                       'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len,
+                       'flow_embedding': embedding}
+        return model_input

+ 1 - 2
cosyvoice/flow/flow.py

@@ -124,7 +124,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
         # text encode
         h, h_lengths = self.encoder(token, token_len)
         h = self.encoder_proj(h)
-        mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / 50 * 22050 / 256)
+        mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
         h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2)
 
         # get conditions
@@ -132,7 +132,6 @@ class MaskedDiffWithXvec(torch.nn.Module):
         conds[:, :mel_len1] = prompt_feat
         conds = conds.transpose(1, 2)
 
-        # mask = (~make_pad_mask(feat_len)).to(h)
         mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
         feat = self.decoder(
             mu=h.transpose(1, 2).contiguous(),

+ 1 - 1
cosyvoice/llm/llm.py

@@ -206,7 +206,7 @@ class TransformerLM(torch.nn.Module):
             if top_ids == self.speech_token_size:
                 break
             # in stream mode, yield token one by one
-            yield torch.tensor([[top_ids]], dtype=torch.int64, device=device)
+            yield top_ids
             out_tokens.append(top_ids)
             offset += lm_input.size(1)
             lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)

+ 1 - 202
cosyvoice/tokenizer/tokenizer.py

@@ -4,6 +4,7 @@ import string
 from dataclasses import dataclass, field
 from functools import cached_property, lru_cache
 from typing import Dict, List, Optional, Tuple
+from whisper.tokenizer import Tokenizer
 
 import tiktoken
 
@@ -165,208 +166,6 @@ TTS_Vocal_Token = {
 }
 
 
-@dataclass
-class Tokenizer:
-    """A thin wrapper around `tiktoken` providing quick access to special tokens"""
-
-    encoding: tiktoken.Encoding
-    num_languages: int
-    language: Optional[str] = None
-    task: Optional[str] = None
-    sot_sequence: Tuple[int] = ()
-    special_tokens: Dict[str, int] = field(default_factory=dict)
-
-    def __post_init__(self):
-        for special in self.encoding.special_tokens_set:
-            special_token = self.encoding.encode_single_token(special)
-            self.special_tokens[special] = special_token
-
-        sot: int = self.special_tokens["<|startoftranscript|>"]
-        translate: int = self.special_tokens["<|translate|>"]
-        transcribe: int = self.special_tokens["<|transcribe|>"]
-
-        langs = tuple(LANGUAGES.keys())[: self.num_languages]
-        sot_sequence = [sot]
-        if self.language is not None:
-            sot_sequence.append(sot + 1 + langs.index(self.language))
-        if self.task is not None:
-            task_token: int = transcribe if self.task == "transcribe" else translate
-            sot_sequence.append(task_token)
-
-        self.sot_sequence = tuple(sot_sequence)
-
-    def encode(self, text, **kwargs):
-        return self.encoding.encode(text, **kwargs)
-
-    def decode(self, token_ids: List[int], **kwargs) -> str:
-        token_ids = [t for t in token_ids if t < self.timestamp_begin]
-        return self.encoding.decode(token_ids, **kwargs)
-
-    def decode_with_timestamps(self, token_ids: List[int], **kwargs) -> str:
-        """
-        Timestamp tokens are above other special tokens' id range and are ignored by `decode()`.
-        This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
-        """
-        return self.encoding.decode(token_ids, **kwargs)
-
-    def get_vocab_size(self) -> int:
-        return self.encoding.n_vocab
-
-    @cached_property
-    def eot(self) -> int:
-        return self.encoding.eot_token
-
-    @cached_property
-    def transcribe(self) -> int:
-        return self.special_tokens["<|transcribe|>"]
-
-    @cached_property
-    def translate(self) -> int:
-        return self.special_tokens["<|translate|>"]
-
-    @cached_property
-    def sot(self) -> int:
-        return self.special_tokens["<|startoftranscript|>"]
-
-    @cached_property
-    def sot_lm(self) -> int:
-        return self.special_tokens["<|startoflm|>"]
-
-    @cached_property
-    def sot_prev(self) -> int:
-        return self.special_tokens["<|startofprev|>"]
-
-    @cached_property
-    def no_speech(self) -> int:
-        return self.special_tokens["<|nospeech|>"]
-
-    @cached_property
-    def no_timestamps(self) -> int:
-        return self.special_tokens["<|notimestamps|>"]
-
-    @cached_property
-    def timestamp_begin(self) -> int:
-        return self.special_tokens["<|0.00|>"]
-
-    @cached_property
-    def language_token(self) -> int:
-        """Returns the token id corresponding to the value of the `language` field"""
-        if self.language is None:
-            raise ValueError("This tokenizer does not have language token configured")
-
-        return self.to_language_token(self.language)
-
-    def to_language_token(self, language):
-        if token := self.special_tokens.get(f"<|{language}|>", None):
-            return token
-
-        raise KeyError(f"Language {language} not found in tokenizer.")
-
-    @cached_property
-    def all_language_tokens(self) -> Tuple[int]:
-        result = []
-        for token, token_id in self.special_tokens.items():
-            if token.strip("<|>") in LANGUAGES:
-                result.append(token_id)
-        return tuple(result)[: self.num_languages]
-
-    @cached_property
-    def all_language_codes(self) -> Tuple[str]:
-        return tuple(self.decode([_l]).strip("<|>") for _l in self.all_language_tokens)
-
-    @cached_property
-    def sot_sequence_including_notimestamps(self) -> Tuple[int]:
-        return tuple(list(self.sot_sequence) + [self.no_timestamps])
-
-    @cached_property
-    def non_speech_tokens(self) -> Tuple[int]:
-        """
-        Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
-        annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.
-
-        - ♪♪♪
-        - ( SPEAKING FOREIGN LANGUAGE )
-        - [DAVID] Hey there,
-
-        keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
-        """
-        symbols = list('"#()*+/:;<=>@[\\]^_`{|}~「」『』')
-        symbols += (
-            "<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()
-        )
-
-        # symbols that may be a single token or multiple tokens depending on the tokenizer.
-        # In case they're multiple tokens, suppress the first token, which is safe because:
-        # These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
-        # in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
-        miscellaneous = set("♩♪♫♬♭♮♯")
-        assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)
-
-        # allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
-        result = {self.encoding.encode(" -")[0], self.encoding.encode(" '")[0]}
-        for symbol in symbols + list(miscellaneous):
-            for tokens in [
-                self.encoding.encode(symbol),
-                self.encoding.encode(" " + symbol),
-            ]:
-                if len(tokens) == 1 or symbol in miscellaneous:
-                    result.add(tokens[0])
-
-        return tuple(sorted(result))
-
-    def split_to_word_tokens(self, tokens: List[int]):
-        if self.language in {"zh", "ja", "th", "lo", "my", "yue"}:
-            # These languages don't typically use spaces, so it is difficult to split words
-            # without morpheme analysis. Here, we instead split words at any
-            # position where the tokens are decoded as valid unicode points
-            return self.split_tokens_on_unicode(tokens)
-
-        return self.split_tokens_on_spaces(tokens)
-
-    def split_tokens_on_unicode(self, tokens: List[int]):
-        decoded_full = self.decode_with_timestamps(tokens)
-        replacement_char = "\ufffd"
-
-        words = []
-        word_tokens = []
-        current_tokens = []
-        unicode_offset = 0
-
-        for token in tokens:
-            current_tokens.append(token)
-            decoded = self.decode_with_timestamps(current_tokens)
-
-            if (
-                replacement_char not in decoded
-                or decoded_full[unicode_offset + decoded.index(replacement_char)]
-                == replacement_char
-            ):
-                words.append(decoded)
-                word_tokens.append(current_tokens)
-                current_tokens = []
-                unicode_offset += len(decoded)
-
-        return words, word_tokens
-
-    def split_tokens_on_spaces(self, tokens: List[int]):
-        subwords, subword_tokens_list = self.split_tokens_on_unicode(tokens)
-        words = []
-        word_tokens = []
-
-        for subword, subword_tokens in zip(subwords, subword_tokens_list):
-            special = subword_tokens[0] >= self.eot
-            with_space = subword.startswith(" ")
-            punctuation = subword.strip() in string.punctuation
-            if special or with_space or punctuation or len(words) == 0:
-                words.append(subword)
-                word_tokens.append(subword_tokens)
-            else:
-                words[-1] = words[-1] + subword
-                word_tokens[-1].extend(subword_tokens)
-
-        return words, word_tokens
-
-
 @lru_cache(maxsize=None)
 def get_encoding(name: str = "gpt2", num_languages: int = 99):
     vocab_path = os.path.join(os.path.dirname(__file__), "assets", f"{name}.tiktoken")

+ 8 - 0
cosyvoice/utils/common.py

@@ -15,8 +15,10 @@
 # Modified from ESPnet(https://github.com/espnet/espnet)
 """Unility functions for Transformer."""
 
+import random
 from typing import List
 
+import numpy as np
 import torch
 
 IGNORE_ID = -1
@@ -142,3 +144,9 @@ def fade_in_out(fade_in_mel, fade_out_mel, window):
     fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
         fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
     return fade_in_mel.to(device)
+
+def set_all_random_seed(seed):
+    random.seed(seed)
+    np.random.seed(seed)
+    torch.manual_seed(seed)
+    torch.cuda.manual_seed_all(seed)

+ 1 - 7
webui.py

@@ -24,6 +24,7 @@ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
 sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))
 from cosyvoice.cli.cosyvoice import CosyVoice
 from cosyvoice.utils.file_utils import load_wav, logging
+from cosyvoice.utils.common import set_all_random_seed
 
 inference_mode_list = ['预训练音色', '3s极速复刻', '跨语种复刻', '自然语言控制']
 instruct_dict = {'预训练音色': '1. 选择预训练音色\n2. 点击生成音频按钮',
@@ -42,13 +43,6 @@ def generate_seed():
     }
 
 
-def set_all_random_seed(seed):
-    random.seed(seed)
-    np.random.seed(seed)
-    torch.manual_seed(seed)
-    torch.cuda.manual_seed_all(seed)
-
-
 def postprocess(speech, top_db=60, hop_length=220, win_length=440):
     speech, _ = librosa.effects.trim(
         speech, top_db=top_db,