|
|
@@ -20,23 +20,24 @@ import torch
|
|
|
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
|
|
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
|
|
from cosyvoice.utils.file_utils import logging
|
|
|
+from cosyvoice.utils.class_utils import get_model_type
|
|
|
|
|
|
|
|
|
class CosyVoice:
|
|
|
|
|
|
def __init__(self, model_dir, load_jit=True, load_onnx=False, fp16=True):
|
|
|
- instruct = True if '-Instruct' in model_dir else False
|
|
|
+ self.instruct = True if '-Instruct' in model_dir else False
|
|
|
self.model_dir = model_dir
|
|
|
if not os.path.exists(model_dir):
|
|
|
model_dir = snapshot_download(model_dir)
|
|
|
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
|
|
configs = load_hyperpyyaml(f)
|
|
|
+ assert get_model_type(configs) == CosyVoiceModel, 'do not use {} for CosyVoice initialization!'.format(model_dir)
|
|
|
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
|
|
configs['feat_extractor'],
|
|
|
'{}/campplus.onnx'.format(model_dir),
|
|
|
'{}/speech_tokenizer_v1.onnx'.format(model_dir),
|
|
|
'{}/spk2info.pt'.format(model_dir),
|
|
|
- instruct,
|
|
|
configs['allowed_special'])
|
|
|
self.sample_rate = configs['sample_rate']
|
|
|
if torch.cuda.is_available() is False and (fp16 is True or load_jit is True):
|
|
|
@@ -85,8 +86,6 @@ class CosyVoice:
|
|
|
start_time = time.time()
|
|
|
|
|
|
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
|
|
- if self.frontend.instruct is True and isinstance(self.model, CosyVoiceModel):
|
|
|
- raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
|
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
|
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
|
|
start_time = time.time()
|
|
|
@@ -98,8 +97,8 @@ class CosyVoice:
|
|
|
start_time = time.time()
|
|
|
|
|
|
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
|
|
|
- assert isinstance(self.model, CosyVoiceModel)
|
|
|
- if self.frontend.instruct is False:
|
|
|
+ assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
|
|
|
+ if self.instruct is False:
|
|
|
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
|
|
instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
|
|
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
|
@@ -112,18 +111,6 @@ class CosyVoice:
|
|
|
yield model_output
|
|
|
start_time = time.time()
|
|
|
|
|
|
- def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
|
|
- assert isinstance(self.model, CosyVoice2Model)
|
|
|
- for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
|
- model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
|
|
- start_time = time.time()
|
|
|
- logging.info('synthesis text {}'.format(i))
|
|
|
- for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
|
- speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
|
|
- logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
|
- yield model_output
|
|
|
- start_time = time.time()
|
|
|
-
|
|
|
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
|
|
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
|
|
|
start_time = time.time()
|
|
|
@@ -137,18 +124,18 @@ class CosyVoice:
|
|
|
class CosyVoice2(CosyVoice):
|
|
|
|
|
|
def __init__(self, model_dir, load_jit=False, load_onnx=False, load_trt=False):
|
|
|
- instruct = True if '-Instruct' in model_dir else False
|
|
|
+ self.instruct = True if '-Instruct' in model_dir else False
|
|
|
self.model_dir = model_dir
|
|
|
if not os.path.exists(model_dir):
|
|
|
model_dir = snapshot_download(model_dir)
|
|
|
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
|
|
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
|
|
+ assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
|
|
|
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
|
|
configs['feat_extractor'],
|
|
|
'{}/campplus.onnx'.format(model_dir),
|
|
|
'{}/speech_tokenizer_v2.onnx'.format(model_dir),
|
|
|
'{}/spk2info.pt'.format(model_dir),
|
|
|
- instruct,
|
|
|
configs['allowed_special'])
|
|
|
self.sample_rate = configs['sample_rate']
|
|
|
if torch.cuda.is_available() is False and load_jit is True:
|
|
|
@@ -168,3 +155,18 @@ class CosyVoice2(CosyVoice):
|
|
|
if load_trt:
|
|
|
self.model.load_trt('{}/flow.decoder.estimator.fp16.Volta.plan'.format(model_dir))
|
|
|
del configs
|
|
|
+
|
|
|
+ def inference_instruct(self, *args, **kwargs):
|
|
|
+ raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
|
|
|
+
|
|
|
+ def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
|
|
+ assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
|
|
|
+ for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
|
+ model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
|
|
+ start_time = time.time()
|
|
|
+ logging.info('synthesis text {}'.format(i))
|
|
|
+ for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
|
+ speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
|
|
+ logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
|
+ yield model_output
|
|
|
+ start_time = time.time()
|