|
|
@@ -1,5 +1,5 @@
|
|
|
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
|
|
-# 2024 Alibaba Inc (authors: Xiang Lyu)
|
|
|
+# 2024 Alibaba Inc (authors: Xiang Lyu, Zetao Hu)
|
|
|
#
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
@@ -14,6 +14,7 @@
|
|
|
# limitations under the License.
|
|
|
|
|
|
import json
|
|
|
+import tensorrt as trt
|
|
|
import torchaudio
|
|
|
import logging
|
|
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
|
|
@@ -45,3 +46,44 @@ def load_wav(wav, target_sr):
|
|
|
assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
|
|
|
speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
|
|
|
return speech
|
|
|
+
|
|
|
+
|
|
|
+def convert_onnx_to_trt(trt_model, onnx_model, fp16):
|
|
|
+ _min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2,), (2, 80), (2, 80, 4)]
|
|
|
+ _opt_shape = [(2, 80, 193), (2, 1, 193), (2, 80, 193), (2,), (2, 80), (2, 80, 193)]
|
|
|
+ _max_shape = [(2, 80, 6800), (2, 1, 6800), (2, 80, 6800), (2,), (2, 80), (2, 80, 6800)]
|
|
|
+ input_names = ["x", "mask", "mu", "t", "spks", "cond"]
|
|
|
+
|
|
|
+ logging.info("Converting onnx to trt...")
|
|
|
+ network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
|
|
+ logger = trt.Logger(trt.Logger.INFO)
|
|
|
+ builder = trt.Builder(logger)
|
|
|
+ network = builder.create_network(network_flags)
|
|
|
+ parser = trt.OnnxParser(network, logger)
|
|
|
+ config = builder.create_builder_config()
|
|
|
+ config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 33) # 8GB
|
|
|
+ if fp16:
|
|
|
+ config.set_flag(trt.BuilderFlag.FP16)
|
|
|
+ profile = builder.create_optimization_profile()
|
|
|
+ # load onnx model
|
|
|
+ with open(onnx_model, "rb") as f:
|
|
|
+ if not parser.parse(f.read()):
|
|
|
+ for error in range(parser.num_errors):
|
|
|
+ print(parser.get_error(error))
|
|
|
+ raise ValueError('failed to parse {}'.format(onnx_model))
|
|
|
+ # set input shapes
|
|
|
+ for i in range(len(input_names)):
|
|
|
+ profile.set_shape(input_names[i], _min_shape[i], _opt_shape[i], _max_shape[i])
|
|
|
+ tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
|
|
|
+ # set input and output data type
|
|
|
+ for i in range(network.num_inputs):
|
|
|
+ input_tensor = network.get_input(i)
|
|
|
+ input_tensor.dtype = tensor_dtype
|
|
|
+ for i in range(network.num_outputs):
|
|
|
+ output_tensor = network.get_output(i)
|
|
|
+ output_tensor.dtype = tensor_dtype
|
|
|
+ config.add_optimization_profile(profile)
|
|
|
+ engine_bytes = builder.build_serialized_network(network, config)
|
|
|
+ # save trt engine
|
|
|
+ with open(trt_model, "wb") as f:
|
|
|
+ f.write(engine_bytes)
|