|
@@ -59,8 +59,8 @@ class CosyVoice:
|
|
|
spks = list(self.frontend.spk2info.keys())
|
|
spks = list(self.frontend.spk2info.keys())
|
|
|
return spks
|
|
return spks
|
|
|
|
|
|
|
|
- def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0):
|
|
|
|
|
- for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
|
|
|
|
|
|
+ def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
|
|
|
|
+ for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
|
model_input = self.frontend.frontend_sft(i, spk_id)
|
|
model_input = self.frontend.frontend_sft(i, spk_id)
|
|
|
start_time = time.time()
|
|
start_time = time.time()
|
|
|
logging.info('synthesis text {}'.format(i))
|
|
logging.info('synthesis text {}'.format(i))
|
|
@@ -70,9 +70,9 @@ class CosyVoice:
|
|
|
yield model_output
|
|
yield model_output
|
|
|
start_time = time.time()
|
|
start_time = time.time()
|
|
|
|
|
|
|
|
- def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0):
|
|
|
|
|
- prompt_text = self.frontend.text_normalize(prompt_text, split=False)
|
|
|
|
|
- for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
|
|
|
|
|
|
+ def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
|
|
|
|
+ prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
|
|
|
|
|
+ for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
|
if len(i) < 0.5 * len(prompt_text):
|
|
if len(i) < 0.5 * len(prompt_text):
|
|
|
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
|
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
|
|
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
|
|
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
|
|
@@ -84,10 +84,10 @@ class CosyVoice:
|
|
|
yield model_output
|
|
yield model_output
|
|
|
start_time = time.time()
|
|
start_time = time.time()
|
|
|
|
|
|
|
|
- def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0):
|
|
|
|
|
|
|
+ def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
|
|
if self.frontend.instruct is True and isinstance(self.model, CosyVoiceModel):
|
|
if self.frontend.instruct is True and isinstance(self.model, CosyVoiceModel):
|
|
|
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
|
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
|
|
- for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
|
|
|
|
|
|
+ for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
|
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
|
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
|
|
start_time = time.time()
|
|
start_time = time.time()
|
|
|
logging.info('synthesis text {}'.format(i))
|
|
logging.info('synthesis text {}'.format(i))
|
|
@@ -97,12 +97,12 @@ class CosyVoice:
|
|
|
yield model_output
|
|
yield model_output
|
|
|
start_time = time.time()
|
|
start_time = time.time()
|
|
|
|
|
|
|
|
- def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0):
|
|
|
|
|
|
|
+ def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
|
|
|
assert isinstance(self.model, CosyVoiceModel)
|
|
assert isinstance(self.model, CosyVoiceModel)
|
|
|
if self.frontend.instruct is False:
|
|
if self.frontend.instruct is False:
|
|
|
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
|
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
|
|
- instruct_text = self.frontend.text_normalize(instruct_text, split=False)
|
|
|
|
|
- for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
|
|
|
|
|
|
+ instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
|
|
|
|
|
+ for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
|
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
|
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
|
|
start_time = time.time()
|
|
start_time = time.time()
|
|
|
logging.info('synthesis text {}'.format(i))
|
|
logging.info('synthesis text {}'.format(i))
|
|
@@ -112,9 +112,9 @@ class CosyVoice:
|
|
|
yield model_output
|
|
yield model_output
|
|
|
start_time = time.time()
|
|
start_time = time.time()
|
|
|
|
|
|
|
|
- def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0):
|
|
|
|
|
|
|
+ def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
|
|
assert isinstance(self.model, CosyVoice2Model)
|
|
assert isinstance(self.model, CosyVoice2Model)
|
|
|
- for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
|
|
|
|
|
|
+ for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
|
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
|
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
|
|
start_time = time.time()
|
|
start_time = time.time()
|
|
|
logging.info('synthesis text {}'.format(i))
|
|
logging.info('synthesis text {}'.format(i))
|