lyuxiang.lx hai 11 meses
pai
achega
ac70560364

+ 2 - 1
cosyvoice/cli/cosyvoice.py

@@ -120,6 +120,7 @@ class CosyVoice:
             yield model_output
             start_time = time.time()
 
+
 class CosyVoice2(CosyVoice):
 
     def __init__(self, model_dir, load_jit=False, load_onnx=False, load_trt=False):
@@ -153,4 +154,4 @@ class CosyVoice2(CosyVoice):
             self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir))
         if load_trt:
             self.model.load_trt('{}/flow.decoder.estimator.fp16.Volta.plan'.format(model_dir))
-        del configs
+        del configs

+ 2 - 2
cosyvoice/cli/frontend.py

@@ -123,7 +123,7 @@ class CosyVoiceFrontEnd:
                 text = remove_bracket(text)
                 text = re.sub(r'[,,、]+$', '。', text)
                 texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
-                                            token_min_n=60, merge_len=20, comma_split=False))
+                                             token_min_n=60, merge_len=20, comma_split=False))
         else:
             if self.use_ttsfrd:
                 texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
@@ -132,7 +132,7 @@ class CosyVoiceFrontEnd:
                 text = self.en_tn_model.normalize(text)
                 text = spell_out_number(text, self.inflect_parser)
                 texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
-                                            token_min_n=60, merge_len=20, comma_split=False))
+                                             token_min_n=60, merge_len=20, comma_split=False))
         if split is False:
             return text
         return texts

+ 8 - 8
cosyvoice/cli/model.py

@@ -330,13 +330,13 @@ class CosyVoice2Model:
 
     def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0):
         tts_mel, _ = self.flow.inference(token=token.to(self.device),
-                                                  token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
-                                                  prompt_token=prompt_token.to(self.device),
-                                                  prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
-                                                  prompt_feat=prompt_feat.to(self.device),
-                                                  prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
-                                                  embedding=embedding.to(self.device),
-                                                  finalize=finalize)
+                                         token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
+                                         prompt_token=prompt_token.to(self.device),
+                                         prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
+                                         prompt_feat=prompt_feat.to(self.device),
+                                         prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
+                                         embedding=embedding.to(self.device),
+                                         finalize=finalize)
         tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
         # append hift cache
         if self.hift_cache_dict[uuid] is not None:
@@ -418,4 +418,4 @@ class CosyVoice2Model:
             yield {'tts_speech': this_tts_speech.cpu()}
         with self.lock:
             self.tts_speech_token_dict.pop(this_uuid)
-            self.llm_end_dict.pop(this_uuid)
+            self.llm_end_dict.pop(this_uuid)

+ 12 - 10
cosyvoice/flow/decoder.py

@@ -49,7 +49,7 @@ class CausalBlock1D(Block1D):
 
 
 class CausalResnetBlock1D(ResnetBlock1D):
-    def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int=8):
+    def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
         super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
         self.block1 = CausalBlock1D(dim, dim_out)
         self.block2 = CausalBlock1D(dim_out, dim_out)
@@ -70,12 +70,11 @@ class CausalConv1d(torch.nn.Conv1d):
         dtype=None
     ) -> None:
         super(CausalConv1d, self).__init__(in_channels, out_channels,
-            kernel_size, stride,
-            padding=0, dilation=dilation,
-            groups=groups, bias=bias,
-            padding_mode=padding_mode,
-            device=device, dtype=dtype
-        )
+                                           kernel_size, stride,
+                                           padding=0, dilation=dilation,
+                                           groups=groups, bias=bias,
+                                           padding_mode=padding_mode,
+                                           device=device, dtype=dtype)
         assert stride == 1
         self.causal_padding = (kernel_size - 1, 0)
 
@@ -124,7 +123,8 @@ class ConditionalDecoder(nn.Module):
             input_channel = output_channel
             output_channel = channels[i]
             is_last = i == len(channels) - 1
-            resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
+            resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal \
+                     else ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
             transformer_blocks = nn.ModuleList(
                 [
                     BasicTransformerBlock(
@@ -138,14 +138,16 @@ class ConditionalDecoder(nn.Module):
                 ]
             )
             downsample = (
-                Downsample1D(output_channel) if not is_last else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
+                Downsample1D(output_channel) if not is_last else \
+                CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
             )
             self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
 
         for _ in range(num_mid_blocks):
             input_channel = channels[-1]
             out_channels = channels[-1]
-            resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
+            resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
+                     ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
 
             transformer_blocks = nn.ModuleList(
                 [

+ 2 - 3
cosyvoice/flow/flow.py

@@ -202,7 +202,6 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
         embedding = self.spk_embed_affine_layer(embedding)
 
         # concat text and prompt_text
-        token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
         token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
         mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
         token = self.input_embedding(torch.clamp(token, min=0)) * mask
@@ -211,7 +210,7 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
         h, h_lengths = self.encoder(token, token_len)
         if finalize is False:
             h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
-        mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] -  prompt_feat.shape[1]
+        mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
         h = self.encoder_proj(h)
 
         # get conditions
@@ -229,4 +228,4 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
         )
         feat = feat[:, :, mel_len1:]
         assert feat.shape[2] == mel_len2
-        return feat, None
+        return feat, None

+ 1 - 1
cosyvoice/tokenizer/tokenizer.py

@@ -274,4 +274,4 @@ def get_qwen_tokenizer(
     token_path: str,
     skip_special_tokens: bool
 ) -> QwenTokenizer:
-    return QwenTokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)
+    return QwenTokenizer(token_path=token_path, skip_special_tokens=skip_special_tokens)

+ 5 - 6
cosyvoice/transformer/upsample_encoder.py

@@ -19,7 +19,6 @@ from typing import Tuple
 
 import torch
 from torch import nn
-import torch.utils.checkpoint as ckpt
 from torch.nn import functional as F
 
 from cosyvoice.transformer.convolution import ConvolutionModule
@@ -49,14 +48,14 @@ class Upsample1D(nn.Module):
             number of output channels. Defaults to `channels`.
     """
 
-    def __init__(self, channels: int, out_channels: int, stride: int=2):
+    def __init__(self, channels: int, out_channels: int, stride: int = 2):
         super().__init__()
         self.channels = channels
         self.out_channels = out_channels
         self.stride = stride
         # In this mode, first repeat interpolate, than conv with stride=1
         self.conv = nn.Conv1d(
-            self.channels, self.out_channels, stride*2+1, stride=1,
+            self.channels, self.out_channels, stride * 2 + 1, stride = 1,
             padding=0,
         )
 
@@ -74,7 +73,7 @@ class PreLookaheadLayer(nn.Module):
         self.pre_lookahead_len = pre_lookahead_len
         self.conv1 = nn.Conv1d(
             channels, channels,
-            kernel_size=pre_lookahead_len+1,
+            kernel_size=pre_lookahead_len + 1,
             stride=1, padding=0,
         )
         self.conv2 = nn.Conv1d(
@@ -315,8 +314,8 @@ class UpsampleConformerEncoder(torch.nn.Module):
         return xs
 
     def forward_up_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
-                       pos_emb: torch.Tensor,
-                       mask_pad: torch.Tensor) -> torch.Tensor:
+                          pos_emb: torch.Tensor,
+                          mask_pad: torch.Tensor) -> torch.Tensor:
         for layer in self.up_encoders:
             xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
         return xs

+ 1 - 1
cosyvoice/utils/common.py

@@ -163,4 +163,4 @@ def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
     # NOTE(Mddct): torch.finfo jit issues
     #     chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
     mask = (1.0 - mask) * torch.finfo(dtype).min
-    return mask
+    return mask