cosyvoice.py 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115
  1. # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. import time
  16. from tqdm import tqdm
  17. from hyperpyyaml import load_hyperpyyaml
  18. from modelscope import snapshot_download
  19. from cosyvoice.cli.frontend import CosyVoiceFrontEnd
  20. from cosyvoice.cli.model import CosyVoiceModel
  21. from cosyvoice.utils.file_utils import logging
  22. class CosyVoice:
  23. def __init__(self, model_dir, load_jit=True, load_onnx=False, fp16=True):
  24. instruct = True if '-Instruct' in model_dir else False
  25. self.model_dir = model_dir
  26. if not os.path.exists(model_dir):
  27. model_dir = snapshot_download(model_dir)
  28. with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
  29. configs = load_hyperpyyaml(f)
  30. self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
  31. configs['feat_extractor'],
  32. '{}/campplus.onnx'.format(model_dir),
  33. '{}/speech_tokenizer_v1.onnx'.format(model_dir),
  34. '{}/spk2info.pt'.format(model_dir),
  35. instruct,
  36. configs['allowed_special'])
  37. self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
  38. self.model.load('{}/llm.pt'.format(model_dir),
  39. '{}/flow.pt'.format(model_dir),
  40. '{}/hift.pt'.format(model_dir))
  41. if load_jit:
  42. self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
  43. '{}/llm.llm.fp16.zip'.format(model_dir),
  44. '{}/flow.encoder.fp32.zip'.format(model_dir))
  45. if load_onnx:
  46. self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir))
  47. del configs
  48. def list_avaliable_spks(self):
  49. spks = list(self.frontend.spk2info.keys())
  50. return spks
  51. def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0):
  52. for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
  53. model_input = self.frontend.frontend_sft(i, spk_id)
  54. start_time = time.time()
  55. logging.info('synthesis text {}'.format(i))
  56. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  57. speech_len = model_output['tts_speech'].shape[1] / 22050
  58. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  59. yield model_output
  60. start_time = time.time()
  61. def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0):
  62. prompt_text = self.frontend.text_normalize(prompt_text, split=False)
  63. for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
  64. if len(i) < 0.5 * len(prompt_text):
  65. logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
  66. model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
  67. start_time = time.time()
  68. logging.info('synthesis text {}'.format(i))
  69. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  70. speech_len = model_output['tts_speech'].shape[1] / 22050
  71. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  72. yield model_output
  73. start_time = time.time()
  74. def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0):
  75. if self.frontend.instruct is True:
  76. raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
  77. for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
  78. model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
  79. start_time = time.time()
  80. logging.info('synthesis text {}'.format(i))
  81. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  82. speech_len = model_output['tts_speech'].shape[1] / 22050
  83. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  84. yield model_output
  85. start_time = time.time()
  86. def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0):
  87. if self.frontend.instruct is False:
  88. raise ValueError('{} do not support instruct inference'.format(self.model_dir))
  89. instruct_text = self.frontend.text_normalize(instruct_text, split=False)
  90. for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
  91. model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
  92. start_time = time.time()
  93. logging.info('synthesis text {}'.format(i))
  94. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  95. speech_len = model_output['tts_speech'].shape[1] / 22050
  96. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  97. yield model_output
  98. start_time = time.time()
  99. def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
  100. model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k)
  101. start_time = time.time()
  102. for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
  103. speech_len = model_output['tts_speech'].shape[1] / 22050
  104. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  105. yield model_output
  106. start_time = time.time()