1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 |
- # Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
- # 2024 Alibaba Inc (authors: Xiang Lyu, Zetao Hu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import json
- import torchaudio
- import logging
- logging.getLogger('matplotlib').setLevel(logging.WARNING)
- logging.basicConfig(level=logging.DEBUG,
- format='%(asctime)s %(levelname)s %(message)s')
- def read_lists(list_file):
- lists = []
- with open(list_file, 'r', encoding='utf8') as fin:
- for line in fin:
- lists.append(line.strip())
- return lists
- def read_json_lists(list_file):
- lists = read_lists(list_file)
- results = {}
- for fn in lists:
- with open(fn, 'r', encoding='utf8') as fin:
- results.update(json.load(fin))
- return results
- def load_wav(wav, target_sr):
- speech, sample_rate = torchaudio.load(wav, backend='soundfile')
- speech = speech.mean(dim=0, keepdim=True)
- if sample_rate != target_sr:
- assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
- speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
- return speech
- def convert_onnx_to_trt(trt_model, onnx_model, fp16):
- import tensorrt as trt
- _min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2,), (2, 80), (2, 80, 4)]
- _opt_shape = [(2, 80, 193), (2, 1, 193), (2, 80, 193), (2,), (2, 80), (2, 80, 193)]
- _max_shape = [(2, 80, 6800), (2, 1, 6800), (2, 80, 6800), (2,), (2, 80), (2, 80, 6800)]
- input_names = ["x", "mask", "mu", "t", "spks", "cond"]
- logging.info("Converting onnx to trt...")
- network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
- logger = trt.Logger(trt.Logger.INFO)
- builder = trt.Builder(logger)
- network = builder.create_network(network_flags)
- parser = trt.OnnxParser(network, logger)
- config = builder.create_builder_config()
- config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 33) # 8GB
- if fp16:
- config.set_flag(trt.BuilderFlag.FP16)
- profile = builder.create_optimization_profile()
- # load onnx model
- with open(onnx_model, "rb") as f:
- if not parser.parse(f.read()):
- for error in range(parser.num_errors):
- print(parser.get_error(error))
- raise ValueError('failed to parse {}'.format(onnx_model))
- # set input shapes
- for i in range(len(input_names)):
- profile.set_shape(input_names[i], _min_shape[i], _opt_shape[i], _max_shape[i])
- tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
- # set input and output data type
- for i in range(network.num_inputs):
- input_tensor = network.get_input(i)
- input_tensor.dtype = tensor_dtype
- for i in range(network.num_outputs):
- output_tensor = network.get_output(i)
- output_tensor.dtype = tensor_dtype
- config.add_optimization_profile(profile)
- engine_bytes = builder.build_serialized_network(network, config)
- # save trt engine
- with open(trt_model, "wb") as f:
- f.write(engine_bytes)
|