| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import time
- from hyperpyyaml import load_hyperpyyaml
- from modelscope import snapshot_download
- from cosyvoice.cli.frontend import CosyVoiceFrontEnd
- from cosyvoice.cli.model import CosyVoiceModel
- from cosyvoice.utils.file_utils import logging
- class CosyVoice:
- def __init__(self, model_dir, load_jit=True, load_trt=True, use_fp16=False):
- instruct = True if '-Instruct' in model_dir else False
- self.model_dir = model_dir
- if not os.path.exists(model_dir):
- model_dir = snapshot_download(model_dir)
- with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
- configs = load_hyperpyyaml(f)
- self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
- configs['feat_extractor'],
- '{}/campplus.onnx'.format(model_dir),
- '{}/speech_tokenizer_v1.onnx'.format(model_dir),
- '{}/spk2info.pt'.format(model_dir),
- instruct,
- configs['allowed_special'])
- self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
- self.model.load('{}/llm.pt'.format(model_dir),
- '{}/flow.pt'.format(model_dir),
- '{}/hift.pt'.format(model_dir))
-
- if load_jit:
- self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
- '{}/llm.llm.fp16.zip'.format(model_dir))
- if load_trt:
- self.model.load_trt(model_dir, use_fp16)
-
- del configs
- def list_avaliable_spks(self):
- spks = list(self.frontend.spk2info.keys())
- return spks
- def inference_sft(self, tts_text, spk_id, stream=False):
- for i in self.frontend.text_normalize(tts_text, split=True):
- model_input = self.frontend.frontend_sft(i, spk_id)
- start_time = time.time()
- logging.info('synthesis text {}'.format(i))
- for model_output in self.model.inference(**model_input, stream=stream):
- speech_len = model_output['tts_speech'].shape[1] / 22050
- logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
- yield model_output
- start_time = time.time()
- def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False):
- prompt_text = self.frontend.text_normalize(prompt_text, split=False)
- for i in self.frontend.text_normalize(tts_text, split=True):
- model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
- start_time = time.time()
- logging.info('synthesis text {}'.format(i))
- for model_output in self.model.inference(**model_input, stream=stream):
- speech_len = model_output['tts_speech'].shape[1] / 22050
- logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
- yield model_output
- start_time = time.time()
- def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False):
- if self.frontend.instruct is True:
- raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
- for i in self.frontend.text_normalize(tts_text, split=True):
- model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
- start_time = time.time()
- logging.info('synthesis text {}'.format(i))
- for model_output in self.model.inference(**model_input, stream=stream):
- speech_len = model_output['tts_speech'].shape[1] / 22050
- logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
- yield model_output
- start_time = time.time()
- def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False):
- if self.frontend.instruct is False:
- raise ValueError('{} do not support instruct inference'.format(self.model_dir))
- instruct_text = self.frontend.text_normalize(instruct_text, split=False)
- for i in self.frontend.text_normalize(tts_text, split=True):
- model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
- start_time = time.time()
- logging.info('synthesis text {}'.format(i))
- for model_output in self.model.inference(**model_input, stream=stream):
- speech_len = model_output['tts_speech'].shape[1] / 22050
- logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
- yield model_output
- start_time = time.time()
|