model.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184
  1. # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import torch
  15. import numpy as np
  16. import threading
  17. import time
  18. from contextlib import nullcontext
  19. import uuid
  20. from cosyvoice.utils.common import fade_in_out
  21. import numpy as np
  22. class CosyVoiceModel:
  23. def __init__(self,
  24. llm: torch.nn.Module,
  25. flow: torch.nn.Module,
  26. hift: torch.nn.Module):
  27. self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
  28. self.llm = llm
  29. self.flow = flow
  30. self.hift = hift
  31. self.token_min_hop_len = 100
  32. self.token_max_hop_len = 200
  33. self.token_overlap_len = 20
  34. # mel fade in out
  35. self.mel_overlap_len = 34
  36. self.mel_window = np.hamming(2 * self.mel_overlap_len)
  37. # hift cache
  38. self.mel_cache_len = 20
  39. self.source_cache_len = int(self.mel_cache_len * 256)
  40. # rtf and decoding related
  41. self.stream_scale_factor = 1
  42. assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
  43. self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
  44. self.flow_hift_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
  45. self.lock = threading.Lock()
  46. # dict used to store session related variable
  47. self.tts_speech_token_dict = {}
  48. self.llm_end_dict = {}
  49. self.mel_overlap_dict = {}
  50. self.hift_cache_dict = {}
  51. def load(self, llm_model, flow_model, hift_model):
  52. self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
  53. self.llm.to(self.device).eval()
  54. self.llm.half()
  55. self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
  56. self.flow.to(self.device).eval()
  57. self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
  58. self.hift.to(self.device).eval()
  59. def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
  60. llm_text_encoder = torch.jit.load(llm_text_encoder_model)
  61. self.llm.text_encoder = llm_text_encoder
  62. llm_llm = torch.jit.load(llm_llm_model)
  63. self.llm.llm = llm_llm
  64. flow_encoder = torch.jit.load(flow_encoder_model)
  65. self.flow.encoder = flow_encoder
  66. def load_onnx(self, flow_decoder_estimator_model):
  67. import onnxruntime
  68. option = onnxruntime.SessionOptions()
  69. option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
  70. option.intra_op_num_threads = 1
  71. providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
  72. del self.flow.decoder.estimator
  73. self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
  74. def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
  75. with self.llm_context:
  76. for i in self.llm.inference(text=text.to(self.device),
  77. text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
  78. prompt_text=prompt_text.to(self.device),
  79. prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
  80. prompt_speech_token=llm_prompt_speech_token.to(self.device),
  81. prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
  82. embedding=llm_embedding.to(self.device).half(),
  83. sampling=25,
  84. max_token_text_ratio=30,
  85. min_token_text_ratio=3):
  86. self.tts_speech_token_dict[uuid].append(i)
  87. self.llm_end_dict[uuid] = True
  88. def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False):
  89. with self.flow_hift_context:
  90. tts_mel = self.flow.inference(token=token.to(self.device),
  91. token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
  92. prompt_token=prompt_token.to(self.device),
  93. prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
  94. prompt_feat=prompt_feat.to(self.device),
  95. prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
  96. embedding=embedding.to(self.device))
  97. # mel overlap fade in out
  98. if self.mel_overlap_dict[uuid] is not None:
  99. tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
  100. # append hift cache
  101. if self.hift_cache_dict[uuid] is not None:
  102. hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
  103. tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
  104. else:
  105. hift_cache_source = torch.zeros(1, 1, 0)
  106. # keep overlap mel and hift cache
  107. if finalize is False:
  108. self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
  109. tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
  110. tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
  111. self.hift_cache_dict[uuid] = {'source': tts_source[:, :, -self.source_cache_len:], 'mel': tts_mel[:, :, -self.mel_cache_len:]}
  112. tts_speech = tts_speech[:, :-self.source_cache_len]
  113. else:
  114. tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
  115. return tts_speech
  116. def inference(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
  117. prompt_text=torch.zeros(1, 0, dtype=torch.int32),
  118. llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
  119. flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
  120. prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, **kwargs):
  121. # this_uuid is used to track variables related to this inference thread
  122. this_uuid = str(uuid.uuid1())
  123. with self.lock:
  124. self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid], self.mel_overlap_dict[this_uuid], self.hift_cache_dict[this_uuid] = [], False, None, None
  125. p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
  126. p.start()
  127. if stream is True:
  128. token_hop_len = self.token_min_hop_len
  129. while True:
  130. time.sleep(0.1)
  131. if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
  132. this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len], dim=1)
  133. with self.flow_hift_context:
  134. this_tts_speech = self.token2wav(token=this_tts_speech_token,
  135. prompt_token=flow_prompt_speech_token,
  136. prompt_feat=prompt_speech_feat,
  137. embedding=flow_embedding,
  138. uuid=this_uuid,
  139. finalize=False)
  140. yield {'tts_speech': this_tts_speech.cpu()}
  141. with self.lock:
  142. self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
  143. # increase token_hop_len for better speech quality
  144. token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
  145. if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
  146. break
  147. p.join()
  148. # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
  149. this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
  150. with self.flow_hift_context:
  151. this_tts_speech = self.token2wav(token=this_tts_speech_token,
  152. prompt_token=flow_prompt_speech_token,
  153. prompt_feat=prompt_speech_feat,
  154. embedding=flow_embedding,
  155. uuid=this_uuid,
  156. finalize=True)
  157. yield {'tts_speech': this_tts_speech.cpu()}
  158. else:
  159. # deal with all tokens
  160. p.join()
  161. this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
  162. with self.flow_hift_context:
  163. this_tts_speech = self.token2wav(token=this_tts_speech_token,
  164. prompt_token=flow_prompt_speech_token,
  165. prompt_feat=prompt_speech_feat,
  166. embedding=flow_embedding,
  167. uuid=this_uuid,
  168. finalize=True)
  169. yield {'tts_speech': this_tts_speech.cpu()}
  170. with self.lock:
  171. self.tts_speech_token_dict.pop(this_uuid)
  172. self.llm_end_dict.pop(this_uuid)
  173. self.mel_overlap_dict.pop(this_uuid)
  174. self.hift_cache_dict.pop(this_uuid)
  175. if torch.cuda.is_available():
  176. torch.cuda.synchronize()