| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235 |
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import onnxruntime
- import torch
- import torch.nn.functional as F
- from matcha.models.components.flow_matching import BASECFM
- class ConditionalCFM(BASECFM):
- def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
- super().__init__(
- n_feats=in_channels,
- cfm_params=cfm_params,
- n_spks=n_spks,
- spk_emb_dim=spk_emb_dim,
- )
- self.t_scheduler = cfm_params.t_scheduler
- self.training_cfg_rate = cfm_params.training_cfg_rate
- self.inference_cfg_rate = cfm_params.inference_cfg_rate
- in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
- # Just change the architecture of the estimator here
- self.estimator = estimator
- @torch.inference_mode()
- def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
- """Forward diffusion
- Args:
- mu (torch.Tensor): output of encoder
- shape: (batch_size, n_feats, mel_timesteps)
- mask (torch.Tensor): output_mask
- shape: (batch_size, 1, mel_timesteps)
- n_timesteps (int): number of diffusion steps
- temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
- spks (torch.Tensor, optional): speaker ids. Defaults to None.
- shape: (batch_size, spk_emb_dim)
- cond: Not used but kept for future purposes
- Returns:
- sample: generated mel-spectrogram
- shape: (batch_size, n_feats, mel_timesteps)
- """
- z = torch.randn_like(mu) * temperature
- cache_size = flow_cache.shape[2]
- # fix prompt and overlap part mu and z
- if cache_size != 0:
- z[:, :, :cache_size] = flow_cache[:, :, :, 0]
- mu[:, :, :cache_size] = flow_cache[:, :, :, 1]
- z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
- mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
- flow_cache = torch.stack([z_cache, mu_cache], dim=-1)
- t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
- if self.t_scheduler == 'cosine':
- t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
- return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache
- def solve_euler(self, x, t_span, mu, mask, spks, cond):
- """
- Fixed euler solver for ODEs.
- Args:
- x (torch.Tensor): random noise
- t_span (torch.Tensor): n_timesteps interpolated
- shape: (n_timesteps + 1,)
- mu (torch.Tensor): output of encoder
- shape: (batch_size, n_feats, mel_timesteps)
- mask (torch.Tensor): output_mask
- shape: (batch_size, 1, mel_timesteps)
- spks (torch.Tensor, optional): speaker ids. Defaults to None.
- shape: (batch_size, spk_emb_dim)
- cond: Not used but kept for future purposes
- """
- t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
- t = t.unsqueeze(dim=0)
- # I am storing this because I can later plot it by putting a debugger here and saving it to a file
- # Or in future might add like a return_all_steps flag
- sol = []
- if self.inference_cfg_rate > 0:
- # Do not use concat, it may cause memory format changed and trt infer with wrong results!
- x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
- mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
- mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
- t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
- spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
- cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
- else:
- x_in, mask_in, mu_in, t_in, spks_in, cond_in = x, mask, mu, t, spks, cond
- for step in range(1, len(t_span)):
- # Classifier-Free Guidance inference introduced in VoiceBox
- if self.inference_cfg_rate > 0:
- x_in[:] = x
- mask_in[:] = mask
- mu_in[0] = mu
- t_in[:] = t.unsqueeze(0)
- spks_in[0] = spks
- cond_in[0] = cond
- else:
- x_in, mask_in, mu_in, t_in, spks_in, cond_in = x, mask, mu, t, spks, cond
- dphi_dt = self.forward_estimator(
- x_in, mask_in,
- mu_in, t_in,
- spks_in,
- cond_in
- )
- if self.inference_cfg_rate > 0:
- dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
- dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
- x = x + dt * dphi_dt
- t = t + dt
- sol.append(x)
- if step < len(t_span) - 1:
- dt = t_span[step + 1] - t
- return sol[-1].float()
- def forward_estimator(self, x, mask, mu, t, spks, cond):
- if isinstance(self.estimator, torch.nn.Module):
- return self.estimator.forward(x, mask, mu, t, spks, cond)
- elif isinstance(self.estimator, onnxruntime.InferenceSession):
- ort_inputs = {
- 'x': x.cpu().numpy(),
- 'mask': mask.cpu().numpy(),
- 'mu': mu.cpu().numpy(),
- 't': t.cpu().numpy(),
- 'spks': spks.cpu().numpy(),
- 'cond': cond.cpu().numpy()
- }
- output = self.estimator.run(None, ort_inputs)[0]
- return torch.tensor(output, dtype=x.dtype, device=x.device)
- else:
- self.estimator.set_input_shape('x', (2, 80, x.size(2)))
- self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
- self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
- self.estimator.set_input_shape('t', (2,))
- self.estimator.set_input_shape('spks', (2, 80))
- self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
- # run trt engine
- self.estimator.execute_v2([x.contiguous().data_ptr(),
- mask.contiguous().data_ptr(),
- mu.contiguous().data_ptr(),
- t.contiguous().data_ptr(),
- spks.contiguous().data_ptr(),
- cond.contiguous().data_ptr(),
- x.data_ptr()])
- return x
- def compute_loss(self, x1, mask, mu, spks=None, cond=None):
- """Computes diffusion loss
- Args:
- x1 (torch.Tensor): Target
- shape: (batch_size, n_feats, mel_timesteps)
- mask (torch.Tensor): target mask
- shape: (batch_size, 1, mel_timesteps)
- mu (torch.Tensor): output of encoder
- shape: (batch_size, n_feats, mel_timesteps)
- spks (torch.Tensor, optional): speaker embedding. Defaults to None.
- shape: (batch_size, spk_emb_dim)
- Returns:
- loss: conditional flow matching loss
- y: conditional flow
- shape: (batch_size, n_feats, mel_timesteps)
- """
- b, _, t = mu.shape
- # random timestep
- t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
- if self.t_scheduler == 'cosine':
- t = 1 - torch.cos(t * 0.5 * torch.pi)
- # sample noise p(x_0)
- z = torch.randn_like(x1)
- y = (1 - (1 - self.sigma_min) * t) * z + t * x1
- u = x1 - (1 - self.sigma_min) * z
- # during training, we randomly drop condition to trade off mode coverage and sample fidelity
- if self.training_cfg_rate > 0:
- cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
- mu = mu * cfg_mask.view(-1, 1, 1)
- spks = spks * cfg_mask.view(-1, 1)
- cond = cond * cfg_mask.view(-1, 1, 1)
- pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
- loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
- return loss, y
- class CausalConditionalCFM(ConditionalCFM):
- def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
- super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator)
- self.rand_noise = torch.randn([1, 80, 50 * 300])
- @torch.inference_mode()
- def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
- """Forward diffusion
- Args:
- mu (torch.Tensor): output of encoder
- shape: (batch_size, n_feats, mel_timesteps)
- mask (torch.Tensor): output_mask
- shape: (batch_size, 1, mel_timesteps)
- n_timesteps (int): number of diffusion steps
- temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
- spks (torch.Tensor, optional): speaker ids. Defaults to None.
- shape: (batch_size, spk_emb_dim)
- cond: Not used but kept for future purposes
- Returns:
- sample: generated mel-spectrogram
- shape: (batch_size, n_feats, mel_timesteps)
- """
- z = self.rand_noise[:, :, :mu.size(2)].to(mu.device) * temperature
- if self.fp16 is True:
- z = z.half()
- # fix prompt and overlap part mu and z
- t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
- if self.t_scheduler == 'cosine':
- t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
- return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None
|