train.py 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136
  1. # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from __future__ import print_function
  15. import argparse
  16. import datetime
  17. import logging
  18. logging.getLogger('matplotlib').setLevel(logging.WARNING)
  19. from copy import deepcopy
  20. import torch
  21. import torch.distributed as dist
  22. import deepspeed
  23. from hyperpyyaml import load_hyperpyyaml
  24. from torch.distributed.elastic.multiprocessing.errors import record
  25. from cosyvoice.utils.executor import Executor
  26. from cosyvoice.utils.train_utils import (
  27. init_distributed,
  28. init_dataset_and_dataloader,
  29. init_optimizer_and_scheduler,
  30. init_summarywriter, save_model,
  31. wrap_cuda_model, check_modify_and_save_config)
  32. def get_args():
  33. parser = argparse.ArgumentParser(description='training your network')
  34. parser.add_argument('--train_engine',
  35. default='torch_ddp',
  36. choices=['torch_ddp', 'deepspeed'],
  37. help='Engine for paralleled training')
  38. parser.add_argument('--model', required=True, help='model which will be trained')
  39. parser.add_argument('--config', required=True, help='config file')
  40. parser.add_argument('--train_data', required=True, help='train data file')
  41. parser.add_argument('--cv_data', required=True, help='cv data file')
  42. parser.add_argument('--checkpoint', help='checkpoint model')
  43. parser.add_argument('--model_dir', required=True, help='save model dir')
  44. parser.add_argument('--tensorboard_dir',
  45. default='tensorboard',
  46. help='tensorboard log dir')
  47. parser.add_argument('--ddp.dist_backend',
  48. dest='dist_backend',
  49. default='nccl',
  50. choices=['nccl', 'gloo'],
  51. help='distributed backend')
  52. parser.add_argument('--num_workers',
  53. default=0,
  54. type=int,
  55. help='num of subprocess workers for reading')
  56. parser.add_argument('--prefetch',
  57. default=100,
  58. type=int,
  59. help='prefetch number')
  60. parser.add_argument('--pin_memory',
  61. action='store_true',
  62. default=False,
  63. help='Use pinned memory buffers used for reading')
  64. parser.add_argument('--deepspeed.save_states',
  65. dest='save_states',
  66. default='model_only',
  67. choices=['model_only', 'model+optimizer'],
  68. help='save model/optimizer states')
  69. parser.add_argument('--timeout',
  70. default=30,
  71. type=int,
  72. help='timeout (in seconds) of cosyvoice_join.')
  73. parser = deepspeed.add_config_arguments(parser)
  74. args = parser.parse_args()
  75. return args
  76. @record
  77. def main():
  78. args = get_args()
  79. logging.basicConfig(level=logging.DEBUG,
  80. format='%(asctime)s %(levelname)s %(message)s')
  81. override_dict = {k: None for k in ['llm', 'flow', 'hift'] if k != args.model}
  82. with open(args.config, 'r') as f:
  83. configs = load_hyperpyyaml(f, overrides=override_dict)
  84. configs['train_conf'].update(vars(args))
  85. # Init env for ddp
  86. init_distributed(args)
  87. # Get dataset & dataloader
  88. train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
  89. init_dataset_and_dataloader(args, configs)
  90. # Do some sanity checks and save config to arsg.model_dir
  91. configs = check_modify_and_save_config(args, configs)
  92. # Tensorboard summary
  93. writer = init_summarywriter(args)
  94. # load checkpoint
  95. model = configs[args.model]
  96. if args.checkpoint is not None:
  97. model.load_state_dict(torch.load(args.checkpoint, map_location='cpu'))
  98. # Dispatch model from cpu to gpu
  99. model = wrap_cuda_model(args, model)
  100. # Get optimizer & scheduler
  101. model, optimizer, scheduler = init_optimizer_and_scheduler(args, configs, model)
  102. # Save init checkpoints
  103. info_dict = deepcopy(configs['train_conf'])
  104. save_model(model, 'init', info_dict)
  105. # Get executor
  106. executor = Executor()
  107. # Start training loop
  108. for epoch in range(info_dict['max_epoch']):
  109. executor.epoch = epoch
  110. train_dataset.set_epoch(epoch)
  111. dist.barrier()
  112. group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
  113. executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, group_join)
  114. dist.destroy_process_group(group_join)
  115. if __name__ == '__main__':
  116. main()