123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- # Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
- # 2024 Alibaba Inc (authors: Xiang Lyu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # Modified from ESPnet(https://github.com/espnet/espnet)
- """Unility functions for Transformer."""
- import random
- from typing import List
- import numpy as np
- import torch
- IGNORE_ID = -1
- def pad_list(xs: List[torch.Tensor], pad_value: int):
- """Perform padding for the list of tensors.
- Args:
- xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
- pad_value (float): Value for padding.
- Returns:
- Tensor: Padded tensor (B, Tmax, `*`).
- Examples:
- >>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
- >>> x
- [tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
- >>> pad_list(x, 0)
- tensor([[1., 1., 1., 1.],
- [1., 1., 0., 0.],
- [1., 0., 0., 0.]])
- """
- max_len = max([len(item) for item in xs])
- batchs = len(xs)
- ndim = xs[0].ndim
- if ndim == 1:
- pad_res = torch.zeros(batchs,
- max_len,
- dtype=xs[0].dtype,
- device=xs[0].device)
- elif ndim == 2:
- pad_res = torch.zeros(batchs,
- max_len,
- xs[0].shape[1],
- dtype=xs[0].dtype,
- device=xs[0].device)
- elif ndim == 3:
- pad_res = torch.zeros(batchs,
- max_len,
- xs[0].shape[1],
- xs[0].shape[2],
- dtype=xs[0].dtype,
- device=xs[0].device)
- else:
- raise ValueError(f"Unsupported ndim: {ndim}")
- pad_res.fill_(pad_value)
- for i in range(batchs):
- pad_res[i, :len(xs[i])] = xs[i]
- return pad_res
- def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor,
- ignore_label: int) -> torch.Tensor:
- """Calculate accuracy.
- Args:
- pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
- pad_targets (LongTensor): Target label tensors (B, Lmax).
- ignore_label (int): Ignore label id.
- Returns:
- torch.Tensor: Accuracy value (0.0 - 1.0).
- """
- pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1),
- pad_outputs.size(1)).argmax(2)
- mask = pad_targets != ignore_label
- numerator = torch.sum(
- pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
- denominator = torch.sum(mask)
- return (numerator / denominator).detach()
- def get_padding(kernel_size, dilation=1):
- return int((kernel_size * dilation - dilation) / 2)
- def init_weights(m, mean=0.0, std=0.01):
- classname = m.__class__.__name__
- if classname.find("Conv") != -1:
- m.weight.data.normal_(mean, std)
- # Repetition Aware Sampling in VALL-E 2
- def ras_sampling(weighted_scores, decoded_tokens, sampling, top_p=0.8, top_k=25, win_size=10, tau_r=0.1):
- top_ids = nucleus_sampling(weighted_scores, top_p=top_p, top_k=top_k)
- rep_num = (torch.tensor(decoded_tokens[-win_size:]).to(weighted_scores.device) == top_ids).sum().item()
- if rep_num >= win_size * tau_r:
- top_ids = random_sampling(weighted_scores, decoded_tokens, sampling)
- return top_ids
- def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25):
- prob, indices = [], []
- cum_prob = 0.0
- sorted_value, sorted_idx = weighted_scores.softmax(dim=0).sort(descending=True, stable=True)
- for i in range(len(sorted_idx)):
- # sampling both top-p and numbers.
- if cum_prob < top_p and len(prob) < top_k:
- cum_prob += sorted_value[i]
- prob.append(sorted_value[i])
- indices.append(sorted_idx[i])
- else:
- break
- prob = torch.tensor(prob).to(weighted_scores)
- indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device)
- top_ids = indices[prob.multinomial(1, replacement=True)]
- return top_ids
- def random_sampling(weighted_scores, decoded_tokens, sampling):
- top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True)
- return top_ids
- def fade_in_out(fade_in_mel, fade_out_mel, window):
- device = fade_in_mel.device
- fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu()
- mel_overlap_len = int(window.shape[0] / 2)
- if fade_in_mel.device == torch.device('cpu'):
- fade_in_mel = fade_in_mel.clone()
- fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
- fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
- return fade_in_mel.to(device)
- def set_all_random_seed(seed):
- random.seed(seed)
- np.random.seed(seed)
- torch.manual_seed(seed)
- torch.cuda.manual_seed_all(seed)
- def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
- assert mask.dtype == torch.bool
- assert dtype in [torch.float32, torch.bfloat16, torch.float16]
- mask = mask.to(dtype)
- # attention mask bias
- # NOTE(Mddct): torch.finfo jit issues
- # chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
- mask = (1.0 - mask) * -1.0e+10
- return mask
|