| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103 |
- import argparse
- import logging
- import os
- import sys
- logging.getLogger('matplotlib').setLevel(logging.WARNING)
- try:
- import tensorrt
- except ImportError:
- error_msg_zh = [
- "step.1 下载 tensorrt .tar.gz 压缩包并解压,下载地址: https://developer.nvidia.com/tensorrt/download/10x",
- "step.2 使用 tensorrt whl 包进行安装根据 python 版本对应进行安装,如 pip install ${TensorRT-Path}/python/tensorrt-10.2.0-cp38-none-linux_x86_64.whl",
- "step.3 将 tensorrt 的 lib 路径添加进环境变量中,export LD_LIBRARY_PATH=${TensorRT-Path}/lib/"
- ]
- print("\n".join(error_msg_zh))
- sys.exit(1)
- import torch
- from cosyvoice.cli.cosyvoice import CosyVoice
- def get_args():
- parser = argparse.ArgumentParser(description='Export your model for deployment')
- parser.add_argument('--model_dir',
- type=str,
- default='pretrained_models/CosyVoice-300M',
- help='Local path to the model directory')
- parser.add_argument('--export_half',
- action='store_true',
- help='Export with half precision (FP16)')
-
- args = parser.parse_args()
- print(args)
- return args
- def main():
- args = get_args()
- cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False)
- flow = cosyvoice.model.flow
- estimator = cosyvoice.model.flow.decoder.estimator
- dtype = torch.float32 if not args.export_half else torch.float16
- device = torch.device("cuda")
- batch_size = 1
- seq_len = 1024
- hidden_size = flow.output_size
- x = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
- mask = torch.zeros((batch_size, 1, seq_len), dtype=dtype, device=device)
- mu = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
- t = torch.tensor([0.], dtype=dtype, device=device)
- spks = torch.rand((batch_size, hidden_size), dtype=dtype, device=device)
- cond = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
- onnx_file_name = 'estimator_fp16.onnx' if args.export_half else 'estimator_fp32.onnx'
- onnx_file_path = os.path.join(args.model_dir, onnx_file_name)
- dummy_input = (x, mask, mu, t, spks, cond)
- estimator = estimator.to(dtype)
- torch.onnx.export(
- estimator,
- dummy_input,
- onnx_file_path,
- export_params=True,
- opset_version=18,
- do_constant_folding=True,
- input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
- output_names=['output'],
- dynamic_axes={
- 'x': {2: 'seq_len'},
- 'mask': {2: 'seq_len'},
- 'mu': {2: 'seq_len'},
- 'cond': {2: 'seq_len'},
- 'output': {2: 'seq_len'},
- }
- )
- tensorrt_path = os.environ.get('tensorrt_root_dir')
- if not tensorrt_path:
- raise EnvironmentError("Please set the 'tensorrt_root_dir' environment variable.")
- if not os.path.isdir(tensorrt_path):
- raise FileNotFoundError(f"The directory {tensorrt_path} does not exist.")
- trt_lib_path = os.path.join(tensorrt_path, "lib")
- if trt_lib_path not in os.environ.get('LD_LIBRARY_PATH', ''):
- print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
- os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
- trt_file_name = 'estimator_fp16.plan' if args.export_half else 'estimator_fp32.plan'
- trt_file_path = os.path.join(args.model_dir, trt_file_name)
- trtexec_cmd = f"{tensorrt_path}/bin/trtexec --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
- "--minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 " \
- "--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose"
- os.system(trtexec_cmd)
- if __name__ == "__main__":
- main()
|