| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- import torch
- import torch.nn as nn
- from torch.nn.utils import weight_norm
- from typing import List, Optional, Tuple
- from einops import rearrange
- from torchaudio.transforms import Spectrogram
- class MultipleDiscriminator(nn.Module):
- def __init__(
- self, mpd: nn.Module, mrd: nn.Module
- ):
- super().__init__()
- self.mpd = mpd
- self.mrd = mrd
- def forward(self, y: torch.Tensor, y_hat: torch.Tensor):
- y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], []
- this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mpd(y.unsqueeze(dim=1), y_hat.unsqueeze(dim=1))
- y_d_rs += this_y_d_rs
- y_d_gs += this_y_d_gs
- fmap_rs += this_fmap_rs
- fmap_gs += this_fmap_gs
- this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mrd(y, y_hat)
- y_d_rs += this_y_d_rs
- y_d_gs += this_y_d_gs
- fmap_rs += this_fmap_rs
- fmap_gs += this_fmap_gs
- return y_d_rs, y_d_gs, fmap_rs, fmap_gs
- class MultiResolutionDiscriminator(nn.Module):
- def __init__(
- self,
- fft_sizes: Tuple[int, ...] = (2048, 1024, 512),
- num_embeddings: Optional[int] = None,
- ):
- """
- Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec.
- Additionally, it allows incorporating conditional information with a learned embeddings table.
- Args:
- fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512).
- num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator.
- Defaults to None.
- """
- super().__init__()
- self.discriminators = nn.ModuleList(
- [DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes]
- )
- def forward(
- self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None
- ) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
- y_d_rs = []
- y_d_gs = []
- fmap_rs = []
- fmap_gs = []
- for d in self.discriminators:
- y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id)
- y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id)
- y_d_rs.append(y_d_r)
- fmap_rs.append(fmap_r)
- y_d_gs.append(y_d_g)
- fmap_gs.append(fmap_g)
- return y_d_rs, y_d_gs, fmap_rs, fmap_gs
- class DiscriminatorR(nn.Module):
- def __init__(
- self,
- window_length: int,
- num_embeddings: Optional[int] = None,
- channels: int = 32,
- hop_factor: float = 0.25,
- bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
- ):
- super().__init__()
- self.window_length = window_length
- self.hop_factor = hop_factor
- self.spec_fn = Spectrogram(
- n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
- )
- n_fft = window_length // 2 + 1
- bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
- self.bands = bands
- convs = lambda: nn.ModuleList(
- [
- weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
- weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
- weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
- weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
- weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
- ]
- )
- self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
- if num_embeddings is not None:
- self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels)
- torch.nn.init.zeros_(self.emb.weight)
- self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))
- def spectrogram(self, x):
- # Remove DC offset
- x = x - x.mean(dim=-1, keepdims=True)
- # Peak normalize the volume of input audio
- x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
- x = self.spec_fn(x)
- x = torch.view_as_real(x)
- x = rearrange(x, "b f t c -> b c t f")
- # Split into bands
- x_bands = [x[..., b[0]: b[1]] for b in self.bands]
- return x_bands
- def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None):
- x_bands = self.spectrogram(x)
- fmap = []
- x = []
- for band, stack in zip(x_bands, self.band_convs):
- for i, layer in enumerate(stack):
- band = layer(band)
- band = torch.nn.functional.leaky_relu(band, 0.1)
- if i > 0:
- fmap.append(band)
- x.append(band)
- x = torch.cat(x, dim=-1)
- if cond_embedding_id is not None:
- emb = self.emb(cond_embedding_id)
- h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True)
- else:
- h = 0
- x = self.conv_post(x)
- fmap.append(x)
- x += h
- return x, fmap
|