| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import sys
- import argparse
- import logging
- logging.getLogger('matplotlib').setLevel(logging.WARNING)
- from fastapi import FastAPI, UploadFile, Form, File
- from fastapi.responses import StreamingResponse
- from fastapi.middleware.cors import CORSMiddleware
- import uvicorn
- import numpy as np
- ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
- sys.path.append('{}/../../..'.format(ROOT_DIR))
- sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
- from cosyvoice.cli.cosyvoice import CosyVoice
- from cosyvoice.utils.file_utils import load_wav
- app = FastAPI()
- # set cross region allowance
- app.add_middleware(
- CORSMiddleware,
- allow_origins=["*"],
- allow_credentials=True,
- allow_methods=["*"],
- allow_headers=["*"])
- def generate_data(model_output):
- for i in model_output:
- tts_audio = (i['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes()
- yield tts_audio
- @app.get("/inference_sft")
- async def inference_sft(tts_text: str = Form(), spk_id: str = Form()):
- model_output = cosyvoice.inference_sft(tts_text, spk_id)
- return StreamingResponse(generate_data(model_output))
- @app.get("/inference_zero_shot")
- async def inference_zero_shot(tts_text: str = Form(), prompt_text: str = Form(), prompt_wav: UploadFile = File()):
- prompt_speech_16k = load_wav(prompt_wav.file, 16000)
- model_output = cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k)
- return StreamingResponse(generate_data(model_output))
- @app.get("/inference_cross_lingual")
- async def inference_cross_lingual(tts_text: str = Form(), prompt_wav: UploadFile = File()):
- prompt_speech_16k = load_wav(prompt_wav.file, 16000)
- model_output = cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k)
- return StreamingResponse(generate_data(model_output))
- @app.get("/inference_instruct")
- async def inference_instruct(tts_text: str = Form(), spk_id: str = Form(), instruct_text: str = Form()):
- model_output = cosyvoice.inference_instruct(tts_text, spk_id, instruct_text)
- return StreamingResponse(generate_data(model_output))
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--port',
- type=int,
- default=50000)
- parser.add_argument('--model_dir',
- type=str,
- default='iic/CosyVoice-300M',
- help='local path or modelscope repo id')
- args = parser.parse_args()
- cosyvoice = CosyVoice(args.model_dir)
- uvicorn.run(app, host="0.0.0.0", port=args.port)
|