| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- # Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, hexisyztem@icloud.com)
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import print_function
- import argparse
- import logging
- logging.getLogger('matplotlib').setLevel(logging.WARNING)
- import os
- import sys
- import onnxruntime
- import random
- import torch
- from tqdm import tqdm
- ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
- sys.path.append('{}/../..'.format(ROOT_DIR))
- sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
- from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
- def get_dummy_input(batch_size, seq_len, out_channels, device):
- x = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
- mask = torch.ones((batch_size, 1, seq_len), dtype=torch.float32, device=device)
- mu = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
- t = torch.rand((batch_size), dtype=torch.float32, device=device)
- spks = torch.rand((batch_size, out_channels), dtype=torch.float32, device=device)
- cond = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
- return x, mask, mu, t, spks, cond
- def get_args():
- parser = argparse.ArgumentParser(description='export your model for deployment')
- parser.add_argument('--model_dir',
- type=str,
- default='pretrained_models/CosyVoice-300M',
- help='local path')
- args = parser.parse_args()
- print(args)
- return args
- def main():
- args = get_args()
- logging.basicConfig(level=logging.DEBUG,
- format='%(asctime)s %(levelname)s %(message)s')
- try:
- model = CosyVoice(args.model_dir)
- except Exception:
- try:
- model = CosyVoice2(args.model_dir)
- except Exception:
- raise TypeError('no valid model_type!')
- # 1. export flow decoder estimator
- estimator = model.model.flow.decoder.estimator
- device = model.model.device
- batch_size, seq_len = 2, 256
- out_channels = model.model.flow.decoder.estimator.out_channels
- x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
- torch.onnx.export(
- estimator,
- (x, mask, mu, t, spks, cond),
- '{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
- export_params=True,
- opset_version=18,
- do_constant_folding=True,
- input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
- output_names=['estimator_out'],
- dynamic_axes={
- 'x': {2: 'seq_len'},
- 'mask': {2: 'seq_len'},
- 'mu': {2: 'seq_len'},
- 'cond': {2: 'seq_len'},
- 'estimator_out': {2: 'seq_len'},
- }
- )
- # 2. test computation consistency
- option = onnxruntime.SessionOptions()
- option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
- option.intra_op_num_threads = 1
- providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
- estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
- sess_options=option, providers=providers)
- for _ in tqdm(range(10)):
- x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
- output_pytorch = estimator(x, mask, mu, t, spks, cond)
- ort_inputs = {
- 'x': x.cpu().numpy(),
- 'mask': mask.cpu().numpy(),
- 'mu': mu.cpu().numpy(),
- 't': t.cpu().numpy(),
- 'spks': spks.cpu().numpy(),
- 'cond': cond.cpu().numpy()
- }
- output_onnx = estimator_onnx.run(None, ort_inputs)[0]
- torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
- if __name__ == "__main__":
- main()
|