1
0

cosyvoice.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168
  1. # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import os
  15. import time
  16. from tqdm import tqdm
  17. from hyperpyyaml import load_hyperpyyaml
  18. from modelscope import snapshot_download
  19. import torch
  20. from cosyvoice.cli.frontend import CosyVoiceFrontEnd
  21. from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
  22. from cosyvoice.utils.file_utils import logging
  23. from cosyvoice.utils.class_utils import get_model_type
  24. class CosyVoice:
  25. def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False):
  26. self.instruct = True if '-Instruct' in model_dir else False
  27. self.model_dir = model_dir
  28. self.fp16 = fp16
  29. if not os.path.exists(model_dir):
  30. model_dir = snapshot_download(model_dir)
  31. with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
  32. configs = load_hyperpyyaml(f)
  33. assert get_model_type(configs) != CosyVoice2Model, 'do not use {} for CosyVoice initialization!'.format(model_dir)
  34. self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
  35. configs['feat_extractor'],
  36. '{}/campplus.onnx'.format(model_dir),
  37. '{}/speech_tokenizer_v1.onnx'.format(model_dir),
  38. '{}/spk2info.pt'.format(model_dir),
  39. configs['allowed_special'])
  40. self.sample_rate = configs['sample_rate']
  41. if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
  42. load_jit, load_trt, fp16 = False, False, False
  43. logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
  44. self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
  45. self.model.load('{}/llm.pt'.format(model_dir),
  46. '{}/flow.pt'.format(model_dir),
  47. '{}/hift.pt'.format(model_dir))
  48. if load_jit:
  49. self.model.load_jit('{}/llm.text_encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
  50. '{}/llm.llm.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'),
  51. '{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
  52. if load_trt:
  53. self.model.load_trt('{}/flow.decoder.estimator.{}.v100.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
  54. del configs
  55. def list_available_spks(self):
  56. spks = list(self.frontend.spk2info.keys())
  57. return spks
  58. def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
  59. for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
  60. model_input = self.frontend.frontend_sft(i, spk_id)
  61. start_time = time.time()
  62. logging.info('synthesis text {}'.format(i))
  63. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  64. speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
  65. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  66. yield model_output
  67. start_time = time.time()
  68. def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
  69. prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
  70. for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
  71. if len(i) < 0.5 * len(prompt_text):
  72. logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
  73. model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
  74. start_time = time.time()
  75. logging.info('synthesis text {}'.format(i))
  76. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  77. speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
  78. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  79. yield model_output
  80. start_time = time.time()
  81. def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
  82. for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
  83. model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
  84. start_time = time.time()
  85. logging.info('synthesis text {}'.format(i))
  86. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  87. speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
  88. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  89. yield model_output
  90. start_time = time.time()
  91. def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
  92. assert isinstance(self.model, CosyVoiceModel), 'inference_instruct is only implemented for CosyVoice!'
  93. if self.instruct is False:
  94. raise ValueError('{} do not support instruct inference'.format(self.model_dir))
  95. instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
  96. for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
  97. model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
  98. start_time = time.time()
  99. logging.info('synthesis text {}'.format(i))
  100. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  101. speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
  102. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  103. yield model_output
  104. start_time = time.time()
  105. def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
  106. model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
  107. start_time = time.time()
  108. for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
  109. speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
  110. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  111. yield model_output
  112. start_time = time.time()
  113. class CosyVoice2(CosyVoice):
  114. def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False):
  115. self.instruct = True if '-Instruct' in model_dir else False
  116. self.model_dir = model_dir
  117. self.fp16 = fp16
  118. if not os.path.exists(model_dir):
  119. model_dir = snapshot_download(model_dir)
  120. with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
  121. configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
  122. assert get_model_type(configs) == CosyVoice2Model, 'do not use {} for CosyVoice2 initialization!'.format(model_dir)
  123. self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
  124. configs['feat_extractor'],
  125. '{}/campplus.onnx'.format(model_dir),
  126. '{}/speech_tokenizer_v2.onnx'.format(model_dir),
  127. '{}/spk2info.pt'.format(model_dir),
  128. configs['allowed_special'])
  129. self.sample_rate = configs['sample_rate']
  130. if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
  131. load_jit, load_trt, fp16 = False, False, False
  132. logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
  133. self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16)
  134. self.model.load('{}/llm.pt'.format(model_dir),
  135. '{}/flow.pt'.format(model_dir),
  136. '{}/hift.pt'.format(model_dir))
  137. if load_jit:
  138. self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
  139. if load_trt:
  140. self.model.load_trt('{}/flow.decoder.estimator.{}.v100.plan'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
  141. del configs
  142. def inference_instruct(self, *args, **kwargs):
  143. raise NotImplementedError('inference_instruct is not implemented for CosyVoice2!')
  144. def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
  145. assert isinstance(self.model, CosyVoice2Model), 'inference_instruct2 is only implemented for CosyVoice2!'
  146. for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
  147. model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
  148. start_time = time.time()
  149. logging.info('synthesis text {}'.format(i))
  150. for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
  151. speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
  152. logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
  153. yield model_output
  154. start_time = time.time()