| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 |
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import torch
- import numpy as np
- import threading
- import time
- from torch.nn import functional as F
- from contextlib import nullcontext
- import uuid
- from cosyvoice.utils.common import fade_in_out
- class CosyVoiceModel:
- def __init__(self,
- llm: torch.nn.Module,
- flow: torch.nn.Module,
- hift: torch.nn.Module):
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- self.llm = llm
- self.flow = flow
- self.hift = hift
- self.token_min_hop_len = 2 * self.flow.input_frame_rate
- self.token_max_hop_len = 4 * self.flow.input_frame_rate
- self.token_overlap_len = 20
- # mel fade in out
- self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
- self.mel_window = np.hamming(2 * self.mel_overlap_len)
- # hift cache
- self.mel_cache_len = 20
- self.source_cache_len = int(self.mel_cache_len * 256)
- # speech fade in out
- self.speech_window = np.hamming(2 * self.source_cache_len)
- # rtf and decoding related
- self.stream_scale_factor = 1
- assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
- self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
- self.lock = threading.Lock()
- # dict used to store session related variable
- self.tts_speech_token_dict = {}
- self.llm_end_dict = {}
- self.flow_cache_dict = {}
- self.mel_overlap_dict = {}
- self.hift_cache_dict = {}
- def load(self, llm_model, flow_model, hift_model):
- self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
- self.llm.to(self.device).eval()
- self.llm.half()
- self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
- self.flow.to(self.device).eval()
- self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
- self.hift.to(self.device).eval()
- def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
- llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
- self.llm.text_encoder = llm_text_encoder
- llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
- self.llm.llm = llm_llm
- flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
- self.flow.encoder = flow_encoder
- def load_onnx(self, flow_decoder_estimator_model):
- import onnxruntime
- option = onnxruntime.SessionOptions()
- option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
- option.intra_op_num_threads = 1
- providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
- del self.flow.decoder.estimator
- self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
- def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
- with self.llm_context:
- for i in self.llm.inference(text=text.to(self.device),
- text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
- prompt_text=prompt_text.to(self.device),
- prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
- prompt_speech_token=llm_prompt_speech_token.to(self.device),
- prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
- embedding=llm_embedding.to(self.device).half()):
- self.tts_speech_token_dict[uuid].append(i)
- self.llm_end_dict[uuid] = True
- def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
- tts_mel, flow_cache = self.flow.inference(token=token.to(self.device),
- token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
- prompt_token=prompt_token.to(self.device),
- prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
- prompt_feat=prompt_feat.to(self.device),
- prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
- embedding=embedding.to(self.device),
- required_cache_size=self.mel_overlap_len,
- flow_cache=self.flow_cache_dict[uuid])
- self.flow_cache_dict[uuid] = flow_cache
- # mel overlap fade in out
- if self.mel_overlap_dict[uuid] is not None:
- tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
- # append hift cache
- if self.hift_cache_dict[uuid] is not None:
- hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
- tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
- else:
- hift_cache_source = torch.zeros(1, 1, 0)
- # keep overlap mel and hift cache
- if finalize is False:
- self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
- tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
- tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
- if self.hift_cache_dict[uuid] is not None:
- tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
- self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
- 'source': tts_source[:, :, -self.source_cache_len:],
- 'speech': tts_speech[:, -self.source_cache_len:]}
- tts_speech = tts_speech[:, :-self.source_cache_len]
- else:
- if speed != 1.0:
- assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
- tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
- tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
- if self.hift_cache_dict[uuid] is not None:
- tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
- return tts_speech
- def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
- prompt_text=torch.zeros(1, 0, dtype=torch.int32),
- llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
- flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
- prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
- # this_uuid is used to track variables related to this inference thread
- this_uuid = str(uuid.uuid1())
- with self.lock:
- self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
- self.flow_cache_dict[this_uuid] = None
- self.mel_overlap_dict[this_uuid], self.hift_cache_dict[this_uuid] = None, None
- p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
- p.start()
- if stream is True:
- token_hop_len = self.token_min_hop_len
- while True:
- time.sleep(0.1)
- if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
- this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
- .unsqueeze(dim=0)
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
- prompt_token=flow_prompt_speech_token,
- prompt_feat=prompt_speech_feat,
- embedding=flow_embedding,
- uuid=this_uuid,
- finalize=False)
- yield {'tts_speech': this_tts_speech.cpu()}
- with self.lock:
- self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
- # increase token_hop_len for better speech quality
- token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
- if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
- break
- p.join()
- # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
- this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
- prompt_token=flow_prompt_speech_token,
- prompt_feat=prompt_speech_feat,
- embedding=flow_embedding,
- uuid=this_uuid,
- finalize=True)
- yield {'tts_speech': this_tts_speech.cpu()}
- else:
- # deal with all tokens
- p.join()
- this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
- prompt_token=flow_prompt_speech_token,
- prompt_feat=prompt_speech_feat,
- embedding=flow_embedding,
- uuid=this_uuid,
- finalize=True,
- speed=speed)
- yield {'tts_speech': this_tts_speech.cpu()}
- with self.lock:
- self.tts_speech_token_dict.pop(this_uuid)
- self.llm_end_dict.pop(this_uuid)
- self.mel_overlap_dict.pop(this_uuid)
- self.hift_cache_dict.pop(this_uuid)
- def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
- # this_uuid is used to track variables related to this inference thread
- this_uuid = str(uuid.uuid1())
- with self.lock:
- self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True
- self.mel_overlap_dict[this_uuid], self.hift_cache_dict[this_uuid] = None, None
- if stream is True:
- token_hop_len = self.token_min_hop_len
- while True:
- if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
- this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
- .unsqueeze(dim=0)
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
- prompt_token=flow_prompt_speech_token,
- prompt_feat=prompt_speech_feat,
- embedding=flow_embedding,
- uuid=this_uuid,
- finalize=False)
- yield {'tts_speech': this_tts_speech.cpu()}
- with self.lock:
- self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
- # increase token_hop_len for better speech quality
- token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
- if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
- break
- # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
- this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid], dim=1).unsqueeze(dim=0)
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
- prompt_token=flow_prompt_speech_token,
- prompt_feat=prompt_speech_feat,
- embedding=flow_embedding,
- uuid=this_uuid,
- finalize=True)
- yield {'tts_speech': this_tts_speech.cpu()}
- else:
- # deal with all tokens
- this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
- prompt_token=flow_prompt_speech_token,
- prompt_feat=prompt_speech_feat,
- embedding=flow_embedding,
- uuid=this_uuid,
- finalize=True,
- speed=speed)
- yield {'tts_speech': this_tts_speech.cpu()}
- with self.lock:
- self.tts_speech_token_dict.pop(this_uuid)
- self.llm_end_dict.pop(this_uuid)
- self.mel_overlap_dict.pop(this_uuid)
- self.hift_cache_dict.pop(this_uuid)
|