| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import print_function
- import argparse
- import logging
- logging.getLogger('matplotlib').setLevel(logging.WARNING)
- import os
- import sys
- import torch
- ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
- sys.path.append('{}/../..'.format(ROOT_DIR))
- sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
- from cosyvoice.cli.cosyvoice import CosyVoice
- def get_args():
- parser = argparse.ArgumentParser(description='export your model for deployment')
- parser.add_argument('--model_dir',
- type=str,
- default='pretrained_models/CosyVoice-300M',
- help='local path')
- args = parser.parse_args()
- print(args)
- return args
- def main():
- args = get_args()
- logging.basicConfig(level=logging.DEBUG,
- format='%(asctime)s %(levelname)s %(message)s')
- torch._C._jit_set_fusion_strategy([('STATIC', 1)])
- torch._C._jit_set_profiling_mode(False)
- torch._C._jit_set_profiling_executor(False)
- cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_onnx=False)
- # 1. export llm text_encoder
- llm_text_encoder = cosyvoice.model.llm.text_encoder.half()
- script = torch.jit.script(llm_text_encoder)
- script = torch.jit.freeze(script)
- script = torch.jit.optimize_for_inference(script)
- script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir))
- # 2. export llm llm
- llm_llm = cosyvoice.model.llm.llm.half()
- script = torch.jit.script(llm_llm)
- script = torch.jit.freeze(script, preserved_attrs=['forward_chunk'])
- script = torch.jit.optimize_for_inference(script)
- script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
- # 3. export flow encoder
- flow_encoder = cosyvoice.model.flow.encoder
- script = torch.jit.script(flow_encoder)
- script = torch.jit.freeze(script)
- script = torch.jit.optimize_for_inference(script)
- script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
- if __name__ == '__main__':
- main()
|