| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 |
- # Copyright (c) 2019 Shigeki Karita
- # 2020 Mobvoi Inc (Binbin Zhang)
- # 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
- # 2024 Alibaba Inc (Xiang Lyu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Multi-Head Attention layer definition."""
- import math
- from typing import Tuple
- import torch
- from torch import nn
- class MultiHeadedAttention(nn.Module):
- """Multi-Head Attention layer.
- Args:
- n_head (int): The number of heads.
- n_feat (int): The number of features.
- dropout_rate (float): Dropout rate.
- """
- def __init__(self,
- n_head: int,
- n_feat: int,
- dropout_rate: float,
- key_bias: bool = True):
- """Construct an MultiHeadedAttention object."""
- super().__init__()
- assert n_feat % n_head == 0
- # We assume d_v always equals d_k
- self.d_k = n_feat // n_head
- self.h = n_head
- self.linear_q = nn.Linear(n_feat, n_feat)
- self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
- self.linear_v = nn.Linear(n_feat, n_feat)
- self.linear_out = nn.Linear(n_feat, n_feat)
- self.dropout = nn.Dropout(p=dropout_rate)
- def forward_qkv(
- self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- """Transform query, key and value.
- Args:
- query (torch.Tensor): Query tensor (#batch, time1, size).
- key (torch.Tensor): Key tensor (#batch, time2, size).
- value (torch.Tensor): Value tensor (#batch, time2, size).
- Returns:
- torch.Tensor: Transformed query tensor, size
- (#batch, n_head, time1, d_k).
- torch.Tensor: Transformed key tensor, size
- (#batch, n_head, time2, d_k).
- torch.Tensor: Transformed value tensor, size
- (#batch, n_head, time2, d_k).
- """
- n_batch = query.size(0)
- q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
- k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
- v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
- q = q.transpose(1, 2) # (batch, head, time1, d_k)
- k = k.transpose(1, 2) # (batch, head, time2, d_k)
- v = v.transpose(1, 2) # (batch, head, time2, d_k)
- return q, k, v
- def forward_attention(
- self,
- value: torch.Tensor,
- scores: torch.Tensor,
- mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
- ) -> torch.Tensor:
- """Compute attention context vector.
- Args:
- value (torch.Tensor): Transformed value, size
- (#batch, n_head, time2, d_k).
- scores (torch.Tensor): Attention score, size
- (#batch, n_head, time1, time2).
- mask (torch.Tensor): Mask, size (#batch, 1, time2) or
- (#batch, time1, time2), (0, 0, 0) means fake mask.
- Returns:
- torch.Tensor: Transformed value (#batch, time1, d_model)
- weighted by the attention score (#batch, time1, time2).
- """
- n_batch = value.size(0)
- # NOTE(xcsong): When will `if mask.size(2) > 0` be True?
- # 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
- # 1st chunk to ease the onnx export.]
- # 2. pytorch training
- if mask.size(2) > 0: # time2 > 0
- mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
- # For last chunk, time2 might be larger than scores.size(-1)
- mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
- scores = scores.masked_fill(mask, -float('inf'))
- attn = torch.softmax(scores, dim=-1).masked_fill(
- mask, 0.0) # (batch, head, time1, time2)
- # NOTE(xcsong): When will `if mask.size(2) > 0` be False?
- # 1. onnx(16/-1, -1/-1, 16/0)
- # 2. jit (16/-1, -1/-1, 16/0, 16/4)
- else:
- attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
- p_attn = self.dropout(attn)
- x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
- x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
- self.h * self.d_k)
- ) # (batch, time1, d_model)
- return self.linear_out(x) # (batch, time1, d_model)
- def forward(
- self,
- query: torch.Tensor,
- key: torch.Tensor,
- value: torch.Tensor,
- mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
- pos_emb: torch.Tensor = torch.empty(0),
- cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """Compute scaled dot product attention.
- Args:
- query (torch.Tensor): Query tensor (#batch, time1, size).
- key (torch.Tensor): Key tensor (#batch, time2, size).
- value (torch.Tensor): Value tensor (#batch, time2, size).
- mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
- (#batch, time1, time2).
- 1.When applying cross attention between decoder and encoder,
- the batch padding mask for input is in (#batch, 1, T) shape.
- 2.When applying self attention of encoder,
- the mask is in (#batch, T, T) shape.
- 3.When applying self attention of decoder,
- the mask is in (#batch, L, L) shape.
- 4.If the different position in decoder see different block
- of the encoder, such as Mocha, the passed in mask could be
- in (#batch, L, T) shape. But there is no such case in current
- CosyVoice.
- cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
- where `cache_t == chunk_size * num_decoding_left_chunks`
- and `head * d_k == size`
- Returns:
- torch.Tensor: Output tensor (#batch, time1, d_model).
- torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
- where `cache_t == chunk_size * num_decoding_left_chunks`
- and `head * d_k == size`
- """
- q, k, v = self.forward_qkv(query, key, value)
- # NOTE(xcsong):
- # when export onnx model, for 1st chunk, we feed
- # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
- # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
- # In all modes, `if cache.size(0) > 0` will alwayse be `True`
- # and we will always do splitting and
- # concatnation(this will simplify onnx export). Note that
- # it's OK to concat & split zero-shaped tensors(see code below).
- # when export jit model, for 1st chunk, we always feed
- # cache(0, 0, 0, 0) since jit supports dynamic if-branch.
- # >>> a = torch.ones((1, 2, 0, 4))
- # >>> b = torch.ones((1, 2, 3, 4))
- # >>> c = torch.cat((a, b), dim=2)
- # >>> torch.equal(b, c) # True
- # >>> d = torch.split(a, 2, dim=-1)
- # >>> torch.equal(d[0], d[1]) # True
- if cache.size(0) > 0:
- key_cache, value_cache = torch.split(cache,
- cache.size(-1) // 2,
- dim=-1)
- k = torch.cat([key_cache, k], dim=2)
- v = torch.cat([value_cache, v], dim=2)
- # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
- # non-trivial to calculate `next_cache_start` here.
- new_cache = torch.cat((k, v), dim=-1)
- scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
- return self.forward_attention(v, scores, mask), new_cache
- class RelPositionMultiHeadedAttention(MultiHeadedAttention):
- """Multi-Head Attention layer with relative position encoding.
- Paper: https://arxiv.org/abs/1901.02860
- Args:
- n_head (int): The number of heads.
- n_feat (int): The number of features.
- dropout_rate (float): Dropout rate.
- """
- def __init__(self,
- n_head: int,
- n_feat: int,
- dropout_rate: float,
- key_bias: bool = True):
- """Construct an RelPositionMultiHeadedAttention object."""
- super().__init__(n_head, n_feat, dropout_rate, key_bias)
- # linear transformation for positional encoding
- self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
- # these two learnable bias are used in matrix c and matrix d
- # as described in https://arxiv.org/abs/1901.02860 Section 3.3
- self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
- self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
- torch.nn.init.xavier_uniform_(self.pos_bias_u)
- torch.nn.init.xavier_uniform_(self.pos_bias_v)
- def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
- """Compute relative positional encoding.
- Args:
- x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
- time1 means the length of query vector.
- Returns:
- torch.Tensor: Output tensor.
- """
- zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
- device=x.device,
- dtype=x.dtype)
- x_padded = torch.cat([zero_pad, x], dim=-1)
- x_padded = x_padded.view(x.size()[0],
- x.size()[1],
- x.size(3) + 1, x.size(2))
- x = x_padded[:, :, 1:].view_as(x)[
- :, :, :, : x.size(-1) // 2 + 1
- ] # only keep the positions from 0 to time2
- return x
- def forward(
- self,
- query: torch.Tensor,
- key: torch.Tensor,
- value: torch.Tensor,
- mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
- pos_emb: torch.Tensor = torch.empty(0),
- cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- """Compute 'Scaled Dot Product Attention' with rel. positional encoding.
- Args:
- query (torch.Tensor): Query tensor (#batch, time1, size).
- key (torch.Tensor): Key tensor (#batch, time2, size).
- value (torch.Tensor): Value tensor (#batch, time2, size).
- mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
- (#batch, time1, time2), (0, 0, 0) means fake mask.
- pos_emb (torch.Tensor): Positional embedding tensor
- (#batch, time2, size).
- cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
- where `cache_t == chunk_size * num_decoding_left_chunks`
- and `head * d_k == size`
- Returns:
- torch.Tensor: Output tensor (#batch, time1, d_model).
- torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
- where `cache_t == chunk_size * num_decoding_left_chunks`
- and `head * d_k == size`
- """
- q, k, v = self.forward_qkv(query, key, value)
- q = q.transpose(1, 2) # (batch, time1, head, d_k)
- # NOTE(xcsong):
- # when export onnx model, for 1st chunk, we feed
- # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
- # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
- # In all modes, `if cache.size(0) > 0` will alwayse be `True`
- # and we will always do splitting and
- # concatnation(this will simplify onnx export). Note that
- # it's OK to concat & split zero-shaped tensors(see code below).
- # when export jit model, for 1st chunk, we always feed
- # cache(0, 0, 0, 0) since jit supports dynamic if-branch.
- # >>> a = torch.ones((1, 2, 0, 4))
- # >>> b = torch.ones((1, 2, 3, 4))
- # >>> c = torch.cat((a, b), dim=2)
- # >>> torch.equal(b, c) # True
- # >>> d = torch.split(a, 2, dim=-1)
- # >>> torch.equal(d[0], d[1]) # True
- if cache.size(0) > 0:
- key_cache, value_cache = torch.split(cache,
- cache.size(-1) // 2,
- dim=-1)
- k = torch.cat([key_cache, k], dim=2)
- v = torch.cat([value_cache, v], dim=2)
- # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
- # non-trivial to calculate `next_cache_start` here.
- new_cache = torch.cat((k, v), dim=-1)
- n_batch_pos = pos_emb.size(0)
- p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
- p = p.transpose(1, 2) # (batch, head, time1, d_k)
- # (batch, head, time1, d_k)
- q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
- # (batch, head, time1, d_k)
- q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
- # compute attention score
- # first compute matrix a and matrix c
- # as described in https://arxiv.org/abs/1901.02860 Section 3.3
- # (batch, head, time1, time2)
- matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
- # compute matrix b and matrix d
- # (batch, head, time1, time2)
- matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
- # NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
- if matrix_ac.shape != matrix_bd.shape:
- matrix_bd = self.rel_shift(matrix_bd)
- scores = (matrix_ac + matrix_bd) / math.sqrt(
- self.d_k) # (batch, head, time1, time2)
- return self.forward_attention(v, scores, mask), new_cache
|