train_utils.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. # Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
  2. # 2023 Horizon Inc. (authors: Xingchen Song)
  3. # 2024 Alibaba Inc (authors: Xiang Lyu)
  4. #
  5. # Licensed under the Apache License, Version 2.0 (the "License");
  6. # you may not use this file except in compliance with the License.
  7. # You may obtain a copy of the License at
  8. #
  9. # http://www.apache.org/licenses/LICENSE-2.0
  10. #
  11. # Unless required by applicable law or agreed to in writing, software
  12. # distributed under the License is distributed on an "AS IS" BASIS,
  13. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14. # See the License for the specific language governing permissions and
  15. # limitations under the License.
  16. from contextlib import nullcontext
  17. import logging
  18. import os
  19. import torch
  20. import json
  21. import re
  22. import datetime
  23. import yaml
  24. import deepspeed
  25. import torch.optim as optim
  26. import torch.distributed as dist
  27. from torch.utils.tensorboard import SummaryWriter
  28. from torch.utils.data import DataLoader
  29. from torch.nn.utils import clip_grad_norm_
  30. from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live
  31. from cosyvoice.dataset.dataset import Dataset
  32. from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing, ConstantLR
  33. def init_distributed(args):
  34. world_size = int(os.environ.get('WORLD_SIZE', 1))
  35. local_rank = int(os.environ.get('LOCAL_RANK', 0))
  36. rank = int(os.environ.get('RANK', 0))
  37. logging.info('training on multiple gpus, this gpu {}'.format(local_rank) +
  38. ', rank {}, world_size {}'.format(rank, world_size))
  39. if args.train_engine == 'torch_ddp':
  40. torch.cuda.set_device(local_rank)
  41. dist.init_process_group(args.dist_backend)
  42. else:
  43. deepspeed.init_distributed(dist_backend=args.dist_backend)
  44. return world_size, local_rank, rank
  45. def init_dataset_and_dataloader(args, configs, gan):
  46. data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline']
  47. train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=True, partition=True)
  48. cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=False, partition=False)
  49. # do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
  50. train_data_loader = DataLoader(train_dataset,
  51. batch_size=None,
  52. pin_memory=args.pin_memory,
  53. num_workers=args.num_workers,
  54. prefetch_factor=args.prefetch)
  55. cv_data_loader = DataLoader(cv_dataset,
  56. batch_size=None,
  57. pin_memory=args.pin_memory,
  58. num_workers=args.num_workers,
  59. prefetch_factor=args.prefetch)
  60. return train_dataset, cv_dataset, train_data_loader, cv_data_loader
  61. def check_modify_and_save_config(args, configs):
  62. if args.train_engine == "torch_ddp":
  63. configs['train_conf']["dtype"] = 'fp32'
  64. else:
  65. with open(args.deepspeed_config, 'r') as fin:
  66. ds_configs = json.load(fin)
  67. if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]:
  68. configs['train_conf']["dtype"] = "fp16"
  69. elif "bf16" in ds_configs and ds_configs["bf16"]["enabled"]:
  70. configs['train_conf']["dtype"] = "bf16"
  71. else:
  72. configs['train_conf']["dtype"] = "fp32"
  73. assert ds_configs["train_micro_batch_size_per_gpu"] == 1
  74. # if use deepspeed, override ddp config
  75. configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] *
  76. configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"])
  77. configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"]
  78. configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"]
  79. configs['train_conf']['log_interval'] = ds_configs["steps_per_print"]
  80. return configs
  81. def wrap_cuda_model(args, model):
  82. local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1))
  83. world_size = int(os.environ.get('WORLD_SIZE', 1))
  84. if args.train_engine == "torch_ddp": # native pytorch ddp
  85. assert (torch.cuda.is_available())
  86. model.cuda()
  87. model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
  88. else:
  89. if int(os.environ.get('RANK', 0)) == 0:
  90. logging.info("Estimating model states memory needs (zero2)...")
  91. estimate_zero2_model_states_mem_needs_all_live(
  92. model,
  93. num_gpus_per_node=local_world_size,
  94. num_nodes=world_size // local_world_size)
  95. return model
  96. def init_optimizer_and_scheduler(args, configs, model, gan):
  97. if gan is False:
  98. if configs['train_conf']['optim'] == 'adam':
  99. optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
  100. elif configs['train_conf']['optim'] == 'adamw':
  101. optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
  102. else:
  103. raise ValueError("unknown optimizer: " + configs['train_conf'])
  104. if configs['train_conf']['scheduler'] == 'warmuplr':
  105. scheduler_type = WarmupLR
  106. scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
  107. elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
  108. scheduler_type = NoamHoldAnnealing
  109. scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
  110. elif configs['train_conf']['scheduler'] == 'constantlr':
  111. scheduler_type = ConstantLR
  112. scheduler = ConstantLR(optimizer)
  113. else:
  114. raise ValueError("unknown scheduler: " + configs['train_conf'])
  115. # use deepspeed optimizer for speedup
  116. if args.train_engine == "deepspeed":
  117. def scheduler(opt):
  118. return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
  119. model, optimizer, _, scheduler = deepspeed.initialize(
  120. args=args,
  121. model=model,
  122. optimizer=None,
  123. lr_scheduler=scheduler,
  124. model_parameters=model.parameters())
  125. optimizer_d, scheduler_d = None, None
  126. else:
  127. # currently we wrap generator and discriminator in one model, so we cannot use deepspeed
  128. if configs['train_conf']['optim'] == 'adam':
  129. optimizer = optim.Adam(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
  130. elif configs['train_conf']['optim'] == 'adamw':
  131. optimizer = optim.AdamW(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
  132. else:
  133. raise ValueError("unknown optimizer: " + configs['train_conf'])
  134. if configs['train_conf']['scheduler'] == 'warmuplr':
  135. scheduler_type = WarmupLR
  136. scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
  137. elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
  138. scheduler_type = NoamHoldAnnealing
  139. scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
  140. elif configs['train_conf']['scheduler'] == 'constantlr':
  141. scheduler_type = ConstantLR
  142. scheduler = ConstantLR(optimizer)
  143. else:
  144. raise ValueError("unknown scheduler: " + configs['train_conf'])
  145. if configs['train_conf']['optim_d'] == 'adam':
  146. optimizer_d = optim.Adam(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
  147. elif configs['train_conf']['optim_d'] == 'adamw':
  148. optimizer_d = optim.AdamW(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
  149. else:
  150. raise ValueError("unknown optimizer: " + configs['train_conf'])
  151. if configs['train_conf']['scheduler_d'] == 'warmuplr':
  152. scheduler_type = WarmupLR
  153. scheduler_d = WarmupLR(optimizer_d, **configs['train_conf']['scheduler_conf'])
  154. elif configs['train_conf']['scheduler_d'] == 'NoamHoldAnnealing':
  155. scheduler_type = NoamHoldAnnealing
  156. scheduler_d = NoamHoldAnnealing(optimizer_d, **configs['train_conf']['scheduler_conf'])
  157. elif configs['train_conf']['scheduler'] == 'constantlr':
  158. scheduler_type = ConstantLR
  159. scheduler_d = ConstantLR(optimizer_d)
  160. else:
  161. raise ValueError("unknown scheduler: " + configs['train_conf'])
  162. return model, optimizer, scheduler, optimizer_d, scheduler_d
  163. def init_summarywriter(args):
  164. writer = None
  165. if int(os.environ.get('RANK', 0)) == 0:
  166. os.makedirs(args.model_dir, exist_ok=True)
  167. writer = SummaryWriter(args.tensorboard_dir)
  168. return writer
  169. def save_model(model, model_name, info_dict):
  170. rank = int(os.environ.get('RANK', 0))
  171. model_dir = info_dict["model_dir"]
  172. save_model_path = os.path.join(model_dir, '{}.pt'.format(model_name))
  173. if info_dict["train_engine"] == "torch_ddp":
  174. if rank == 0:
  175. torch.save(model.module.state_dict(), save_model_path)
  176. else:
  177. with torch.no_grad():
  178. model.save_checkpoint(save_dir=model_dir,
  179. tag=model_name,
  180. client_state=info_dict)
  181. if rank == 0:
  182. info_path = re.sub('.pt$', '.yaml', save_model_path)
  183. info_dict['save_time'] = datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S')
  184. with open(info_path, 'w') as fout:
  185. data = yaml.dump(info_dict)
  186. fout.write(data)
  187. logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format(rank, save_model_path))
  188. def cosyvoice_join(group_join, info_dict):
  189. world_size = int(os.environ.get('WORLD_SIZE', 1))
  190. local_rank = int(os.environ.get('LOCAL_RANK', 0))
  191. rank = int(os.environ.get('RANK', 0))
  192. if info_dict["batch_idx"] != 0:
  193. # we try to join all rank in both ddp and deepspeed mode, in case different rank has different lr
  194. try:
  195. dist.monitored_barrier(group=group_join,
  196. timeout=group_join.options._timeout)
  197. return False
  198. except RuntimeError as e:
  199. logging.info("Detected uneven workload distribution: {}\n".format(e) +
  200. "Break current worker to manually join all workers, " +
  201. "world_size {}, current rank {}, current local_rank {}\n".
  202. format(world_size, rank, local_rank))
  203. return True
  204. else:
  205. return False
  206. def batch_forward(model, batch, scaler, info_dict):
  207. device = int(os.environ.get('LOCAL_RANK', 0))
  208. dtype = info_dict["dtype"]
  209. if dtype == "fp16":
  210. dtype = torch.float16
  211. elif dtype == "bf16":
  212. dtype = torch.bfloat16
  213. else: # fp32
  214. dtype = torch.float32
  215. if info_dict['train_engine'] == 'torch_ddp':
  216. autocast = torch.cuda.amp.autocast(enabled=scaler is not None)
  217. else:
  218. autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False)
  219. with autocast:
  220. info_dict['loss_dict'] = model(batch, device)
  221. return info_dict
  222. def batch_backward(model, scaler, info_dict):
  223. if info_dict["train_engine"] == "deepspeed":
  224. scaled_loss = model.backward(info_dict['loss_dict']['loss'])
  225. else:
  226. scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad']
  227. if scaler is not None:
  228. scaler.scale(scaled_loss).backward()
  229. else:
  230. scaled_loss.backward()
  231. info_dict['loss_dict']['loss'] = scaled_loss
  232. return info_dict
  233. def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict):
  234. grad_norm = 0.0
  235. if info_dict['train_engine'] == "deepspeed":
  236. info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary()
  237. model.step()
  238. grad_norm = model.get_global_grad_norm()
  239. elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0:
  240. # Use mixed precision training
  241. if scaler is not None:
  242. scaler.unscale_(optimizer)
  243. grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
  244. # We don't check grad here since that if the gradient
  245. # has inf/nan values, scaler.step will skip
  246. # optimizer.step().
  247. scaler.step(optimizer)
  248. scaler.update()
  249. else:
  250. grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
  251. if torch.isfinite(grad_norm):
  252. optimizer.step()
  253. optimizer.zero_grad()
  254. scheduler.step()
  255. info_dict["lr"] = optimizer.param_groups[0]['lr']
  256. info_dict["grad_norm"] = grad_norm
  257. return info_dict
  258. def log_per_step(writer, info_dict):
  259. tag = info_dict["tag"]
  260. epoch = info_dict.get('epoch', 0)
  261. step = info_dict["step"]
  262. batch_idx = info_dict["batch_idx"]
  263. loss_dict = info_dict['loss_dict']
  264. rank = int(os.environ.get('RANK', 0))
  265. # only rank 0 write to tensorboard to avoid multi-process write
  266. if writer is not None:
  267. if (info_dict['train_engine'] == 'deepspeed' and info_dict['is_gradient_accumulation_boundary'] is True) or \
  268. (info_dict['train_engine'] == 'torch_ddp' and (info_dict['batch_idx'] + 1) % info_dict['accum_grad'] == 0):
  269. for k in ['epoch', 'lr', 'grad_norm']:
  270. writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
  271. for k, v in loss_dict.items():
  272. writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
  273. # TRAIN & CV, Shell log (stdout)
  274. if (info_dict['batch_idx'] + 1) % info_dict['log_interval'] == 0:
  275. log_str = '{} Batch {}/{} '.format(tag, epoch, batch_idx + 1)
  276. for name, value in loss_dict.items():
  277. log_str += '{} {:.6f} '.format(name, value)
  278. if tag == "TRAIN":
  279. log_str += 'lr {:.8f} grad_norm {:.6f}'.format(
  280. info_dict["lr"], info_dict['grad_norm'])
  281. log_str += ' rank {}'.format(rank)
  282. logging.debug(log_str)
  283. def log_per_save(writer, info_dict):
  284. tag = info_dict["tag"]
  285. epoch = info_dict["epoch"]
  286. step = info_dict["step"]
  287. loss_dict = info_dict["loss_dict"]
  288. lr = info_dict['lr']
  289. rank = int(os.environ.get('RANK', 0))
  290. logging.info(
  291. 'Epoch {} Step {} CV info lr {} {} rank {}'.format(
  292. epoch, step + 1, lr, rank, ' '.join(['{}_{}'.format(k, v) for k, v in loss_dict.items()])))
  293. if writer is not None:
  294. for k in ['epoch', 'lr']:
  295. writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
  296. for k, v in loss_dict.items():
  297. writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)