train_utils.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. # Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
  2. # 2023 Horizon Inc. (authors: Xingchen Song)
  3. # 2024 Alibaba Inc (authors: Xiang Lyu)
  4. #
  5. # Licensed under the Apache License, Version 2.0 (the "License");
  6. # you may not use this file except in compliance with the License.
  7. # You may obtain a copy of the License at
  8. #
  9. # http://www.apache.org/licenses/LICENSE-2.0
  10. #
  11. # Unless required by applicable law or agreed to in writing, software
  12. # distributed under the License is distributed on an "AS IS" BASIS,
  13. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14. # See the License for the specific language governing permissions and
  15. # limitations under the License.
  16. import logging
  17. import os
  18. import torch
  19. import json
  20. import re
  21. import datetime
  22. import yaml
  23. import deepspeed
  24. import torch.optim as optim
  25. import torch.distributed as dist
  26. from torch.utils.tensorboard import SummaryWriter
  27. from torch.utils.data import DataLoader
  28. from torch.nn.utils import clip_grad_norm_
  29. from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live
  30. from cosyvoice.dataset.dataset import Dataset
  31. from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing, ConstantLR
  32. def init_distributed(args):
  33. world_size = int(os.environ.get('WORLD_SIZE', 1))
  34. local_rank = int(os.environ.get('LOCAL_RANK', 0))
  35. rank = int(os.environ.get('RANK', 0))
  36. logging.info('training on multiple gpus, this gpu {}'.format(local_rank) +
  37. ', rank {}, world_size {}'.format(rank, world_size))
  38. if args.train_engine == 'torch_ddp':
  39. torch.cuda.set_device(local_rank)
  40. dist.init_process_group(args.dist_backend)
  41. else:
  42. deepspeed.init_distributed(dist_backend=args.dist_backend)
  43. return world_size, local_rank, rank
  44. def init_dataset_and_dataloader(args, configs, gan):
  45. data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline']
  46. train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=True, partition=True)
  47. cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=False, partition=False)
  48. # do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
  49. train_data_loader = DataLoader(train_dataset,
  50. batch_size=None,
  51. pin_memory=args.pin_memory,
  52. num_workers=args.num_workers,
  53. prefetch_factor=args.prefetch)
  54. cv_data_loader = DataLoader(cv_dataset,
  55. batch_size=None,
  56. pin_memory=args.pin_memory,
  57. num_workers=args.num_workers,
  58. prefetch_factor=args.prefetch)
  59. return train_dataset, cv_dataset, train_data_loader, cv_data_loader
  60. def check_modify_and_save_config(args, configs):
  61. if args.train_engine == "torch_ddp":
  62. configs['train_conf']["dtype"] = 'fp32'
  63. else:
  64. with open(args.deepspeed_config, 'r') as fin:
  65. ds_configs = json.load(fin)
  66. if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]:
  67. configs['train_conf']["dtype"] = "fp16"
  68. elif "bf16" in ds_configs and ds_configs["bf16"]["enabled"]:
  69. configs['train_conf']["dtype"] = "bf16"
  70. else:
  71. configs['train_conf']["dtype"] = "fp32"
  72. assert ds_configs["train_micro_batch_size_per_gpu"] == 1
  73. # if use deepspeed, override ddp config
  74. configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] *
  75. configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"])
  76. configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"]
  77. configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"]
  78. configs['train_conf']['log_interval'] = ds_configs["steps_per_print"]
  79. return configs
  80. def wrap_cuda_model(args, model):
  81. local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1))
  82. world_size = int(os.environ.get('WORLD_SIZE', 1))
  83. if args.train_engine == "torch_ddp": # native pytorch ddp
  84. assert (torch.cuda.is_available())
  85. model.cuda()
  86. model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
  87. else:
  88. if int(os.environ.get('RANK', 0)) == 0:
  89. logging.info("Estimating model states memory needs (zero2)...")
  90. estimate_zero2_model_states_mem_needs_all_live(
  91. model,
  92. num_gpus_per_node=local_world_size,
  93. num_nodes=world_size // local_world_size)
  94. return model
  95. def init_optimizer_and_scheduler(args, configs, model, gan):
  96. if gan is False:
  97. if configs['train_conf']['optim'] == 'adam':
  98. optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
  99. elif configs['train_conf']['optim'] == 'adamw':
  100. optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
  101. else:
  102. raise ValueError("unknown optimizer: " + configs['train_conf'])
  103. if configs['train_conf']['scheduler'] == 'warmuplr':
  104. scheduler_type = WarmupLR
  105. scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
  106. elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
  107. scheduler_type = NoamHoldAnnealing
  108. scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
  109. elif configs['train_conf']['scheduler'] == 'constantlr':
  110. scheduler_type = ConstantLR
  111. scheduler = ConstantLR(optimizer)
  112. else:
  113. raise ValueError("unknown scheduler: " + configs['train_conf'])
  114. # use deepspeed optimizer for speedup
  115. if args.train_engine == "deepspeed":
  116. def scheduler(opt):
  117. return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
  118. model, optimizer, _, scheduler = deepspeed.initialize(
  119. args=args,
  120. model=model,
  121. optimizer=None,
  122. lr_scheduler=scheduler,
  123. model_parameters=model.parameters())
  124. optimizer_d, scheduler_d = None, None
  125. else:
  126. # currently we wrap generator and discriminator in one model, so we cannot use deepspeed
  127. if configs['train_conf']['optim'] == 'adam':
  128. optimizer = optim.Adam(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
  129. elif configs['train_conf']['optim'] == 'adamw':
  130. optimizer = optim.AdamW(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
  131. else:
  132. raise ValueError("unknown optimizer: " + configs['train_conf'])
  133. if configs['train_conf']['scheduler'] == 'warmuplr':
  134. scheduler_type = WarmupLR
  135. scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
  136. elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
  137. scheduler_type = NoamHoldAnnealing
  138. scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
  139. elif configs['train_conf']['scheduler'] == 'constantlr':
  140. scheduler_type = ConstantLR
  141. scheduler = ConstantLR(optimizer)
  142. else:
  143. raise ValueError("unknown scheduler: " + configs['train_conf'])
  144. if configs['train_conf']['optim_d'] == 'adam':
  145. optimizer_d = optim.Adam(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
  146. elif configs['train_conf']['optim_d'] == 'adamw':
  147. optimizer_d = optim.AdamW(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
  148. else:
  149. raise ValueError("unknown optimizer: " + configs['train_conf'])
  150. if configs['train_conf']['scheduler_d'] == 'warmuplr':
  151. scheduler_type = WarmupLR
  152. scheduler_d = WarmupLR(optimizer_d, **configs['train_conf']['scheduler_conf'])
  153. elif configs['train_conf']['scheduler_d'] == 'NoamHoldAnnealing':
  154. scheduler_type = NoamHoldAnnealing
  155. scheduler_d = NoamHoldAnnealing(optimizer_d, **configs['train_conf']['scheduler_conf'])
  156. elif configs['train_conf']['scheduler'] == 'constantlr':
  157. scheduler_type = ConstantLR
  158. scheduler_d = ConstantLR(optimizer_d)
  159. else:
  160. raise ValueError("unknown scheduler: " + configs['train_conf'])
  161. return model, optimizer, scheduler, optimizer_d, scheduler_d
  162. def init_summarywriter(args):
  163. writer = None
  164. if int(os.environ.get('RANK', 0)) == 0:
  165. os.makedirs(args.model_dir, exist_ok=True)
  166. writer = SummaryWriter(args.tensorboard_dir)
  167. return writer
  168. def save_model(model, model_name, info_dict):
  169. rank = int(os.environ.get('RANK', 0))
  170. model_dir = info_dict["model_dir"]
  171. save_model_path = os.path.join(model_dir, '{}.pt'.format(model_name))
  172. if info_dict["train_engine"] == "torch_ddp":
  173. if rank == 0:
  174. torch.save(model.module.state_dict(), save_model_path)
  175. else:
  176. with torch.no_grad():
  177. model.save_checkpoint(save_dir=model_dir,
  178. tag=model_name,
  179. client_state=info_dict)
  180. if rank == 0:
  181. info_path = re.sub('.pt$', '.yaml', save_model_path)
  182. info_dict['save_time'] = datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S')
  183. with open(info_path, 'w') as fout:
  184. data = yaml.dump(info_dict)
  185. fout.write(data)
  186. logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format(rank, save_model_path))
  187. def cosyvoice_join(group_join, info_dict):
  188. world_size = int(os.environ.get('WORLD_SIZE', 1))
  189. local_rank = int(os.environ.get('LOCAL_RANK', 0))
  190. rank = int(os.environ.get('RANK', 0))
  191. if info_dict["batch_idx"] != 0:
  192. # we try to join all rank in both ddp and deepspeed mode, in case different rank has different lr
  193. try:
  194. dist.monitored_barrier(group=group_join,
  195. timeout=group_join.options._timeout)
  196. return False
  197. except RuntimeError as e:
  198. logging.info("Detected uneven workload distribution: {}\n".format(e) +
  199. "Break current worker to manually join all workers, " +
  200. "world_size {}, current rank {}, current local_rank {}\n".
  201. format(world_size, rank, local_rank))
  202. return True
  203. else:
  204. return False
  205. def batch_forward(model, batch, scaler, info_dict):
  206. device = int(os.environ.get('LOCAL_RANK', 0))
  207. dtype = info_dict["dtype"]
  208. if dtype == "fp16":
  209. dtype = torch.float16
  210. elif dtype == "bf16":
  211. dtype = torch.bfloat16
  212. else: # fp32
  213. dtype = torch.float32
  214. if info_dict['train_engine'] == 'torch_ddp':
  215. autocast = torch.cuda.amp.autocast(enabled=scaler is not None)
  216. else:
  217. autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False)
  218. with autocast:
  219. info_dict['loss_dict'] = model(batch, device)
  220. return info_dict
  221. def batch_backward(model, scaler, info_dict):
  222. if info_dict["train_engine"] == "deepspeed":
  223. scaled_loss = model.backward(info_dict['loss_dict']['loss'])
  224. else:
  225. scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad']
  226. if scaler is not None:
  227. scaler.scale(scaled_loss).backward()
  228. else:
  229. scaled_loss.backward()
  230. info_dict['loss_dict']['loss'] = scaled_loss
  231. return info_dict
  232. def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict):
  233. grad_norm = 0.0
  234. if info_dict['train_engine'] == "deepspeed":
  235. info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary()
  236. model.step()
  237. grad_norm = model.get_global_grad_norm()
  238. elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0:
  239. # Use mixed precision training
  240. if scaler is not None:
  241. scaler.unscale_(optimizer)
  242. grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
  243. # We don't check grad here since that if the gradient
  244. # has inf/nan values, scaler.step will skip
  245. # optimizer.step().
  246. scaler.step(optimizer)
  247. scaler.update()
  248. else:
  249. grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
  250. if torch.isfinite(grad_norm):
  251. optimizer.step()
  252. optimizer.zero_grad()
  253. scheduler.step()
  254. info_dict["lr"] = optimizer.param_groups[0]['lr']
  255. info_dict["grad_norm"] = grad_norm
  256. return info_dict
  257. def log_per_step(writer, info_dict):
  258. tag = info_dict["tag"]
  259. epoch = info_dict.get('epoch', 0)
  260. step = info_dict["step"]
  261. batch_idx = info_dict["batch_idx"]
  262. loss_dict = info_dict['loss_dict']
  263. rank = int(os.environ.get('RANK', 0))
  264. # only rank 0 write to tensorboard to avoid multi-process write
  265. if writer is not None:
  266. if (info_dict['train_engine'] == 'deepspeed' and info_dict['is_gradient_accumulation_boundary'] is True) or \
  267. (info_dict['train_engine'] == 'torch_ddp' and (info_dict['batch_idx'] + 1) % info_dict['accum_grad'] == 0):
  268. for k in ['epoch', 'lr', 'grad_norm']:
  269. writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
  270. for k, v in loss_dict.items():
  271. writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
  272. # TRAIN & CV, Shell log (stdout)
  273. if (info_dict['batch_idx'] + 1) % info_dict['log_interval'] == 0:
  274. log_str = '{} Batch {}/{} '.format(tag, epoch, batch_idx + 1)
  275. for name, value in loss_dict.items():
  276. log_str += '{} {:.6f} '.format(name, value)
  277. if tag == "TRAIN":
  278. log_str += 'lr {:.8f} grad_norm {:.6f}'.format(
  279. info_dict["lr"], info_dict['grad_norm'])
  280. log_str += ' rank {}'.format(rank)
  281. logging.debug(log_str)
  282. def log_per_save(writer, info_dict):
  283. tag = info_dict["tag"]
  284. epoch = info_dict["epoch"]
  285. step = info_dict["step"]
  286. loss_dict = info_dict["loss_dict"]
  287. lr = info_dict['lr']
  288. rank = int(os.environ.get('RANK', 0))
  289. logging.info(
  290. 'Epoch {} Step {} CV info lr {} {} rank {}'.format(
  291. epoch, step + 1, lr, rank, ' '.join(['{}_{}'.format(k, v) for k, v in loss_dict.items()])))
  292. if writer is not None:
  293. for k in ['epoch', 'lr']:
  294. writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
  295. for k, v in loss_dict.items():
  296. writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)