1
0

class_utils.py 3.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283
  1. # Copyright [2023-11-28] <sxc19@mails.tsinghua.edu.cn, Xingchen Song>
  2. # 2024 Alibaba Inc (authors: Xiang Lyu)
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. import torch
  16. from cosyvoice.transformer.activation import Swish
  17. from cosyvoice.transformer.subsampling import (
  18. LinearNoSubsampling,
  19. EmbedinigNoSubsampling,
  20. Conv1dSubsampling2,
  21. Conv2dSubsampling4,
  22. Conv2dSubsampling6,
  23. Conv2dSubsampling8,
  24. )
  25. from cosyvoice.transformer.embedding import (PositionalEncoding,
  26. RelPositionalEncoding,
  27. WhisperPositionalEncoding,
  28. LearnablePositionalEncoding,
  29. NoPositionalEncoding)
  30. from cosyvoice.transformer.attention import (MultiHeadedAttention,
  31. RelPositionMultiHeadedAttention)
  32. from cosyvoice.transformer.embedding import EspnetRelPositionalEncoding
  33. from cosyvoice.transformer.subsampling import LegacyLinearNoSubsampling
  34. from cosyvoice.llm.llm import TransformerLM, Qwen2LM
  35. from cosyvoice.flow.flow import MaskedDiffWithXvec, CausalMaskedDiffWithXvec
  36. from cosyvoice.hifigan.generator import HiFTGenerator
  37. from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
  38. COSYVOICE_ACTIVATION_CLASSES = {
  39. "hardtanh": torch.nn.Hardtanh,
  40. "tanh": torch.nn.Tanh,
  41. "relu": torch.nn.ReLU,
  42. "selu": torch.nn.SELU,
  43. "swish": getattr(torch.nn, "SiLU", Swish),
  44. "gelu": torch.nn.GELU,
  45. }
  46. COSYVOICE_SUBSAMPLE_CLASSES = {
  47. "linear": LinearNoSubsampling,
  48. "linear_legacy": LegacyLinearNoSubsampling,
  49. "embed": EmbedinigNoSubsampling,
  50. "conv1d2": Conv1dSubsampling2,
  51. "conv2d": Conv2dSubsampling4,
  52. "conv2d6": Conv2dSubsampling6,
  53. "conv2d8": Conv2dSubsampling8,
  54. 'paraformer_dummy': torch.nn.Identity
  55. }
  56. COSYVOICE_EMB_CLASSES = {
  57. "embed": PositionalEncoding,
  58. "abs_pos": PositionalEncoding,
  59. "rel_pos": RelPositionalEncoding,
  60. "rel_pos_espnet": EspnetRelPositionalEncoding,
  61. "no_pos": NoPositionalEncoding,
  62. "abs_pos_whisper": WhisperPositionalEncoding,
  63. "embed_learnable_pe": LearnablePositionalEncoding,
  64. }
  65. COSYVOICE_ATTENTION_CLASSES = {
  66. "selfattn": MultiHeadedAttention,
  67. "rel_selfattn": RelPositionMultiHeadedAttention,
  68. }
  69. def get_model_type(configs):
  70. # NOTE CosyVoice2Model inherits CosyVoiceModel
  71. if isinstance(configs['llm'], TransformerLM) and isinstance(configs['flow'], MaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
  72. return CosyVoiceModel
  73. if isinstance(configs['llm'], Qwen2LM) and isinstance(configs['flow'], CausalMaskedDiffWithXvec) and isinstance(configs['hift'], HiFTGenerator):
  74. return CosyVoice2Model
  75. raise TypeError('No valid model type found!')