| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- #!/usr/bin/env python3
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import argparse
- import torch
- import torchaudio
- from tqdm import tqdm
- import onnxruntime
- import torchaudio.compliance.kaldi as kaldi
- def main(args):
- utt2wav, utt2spk = {}, {}
- with open('{}/wav.scp'.format(args.dir)) as f:
- for l in f:
- l = l.replace('\n', '').split()
- utt2wav[l[0]] = l[1]
- with open('{}/utt2spk'.format(args.dir)) as f:
- for l in f:
- l = l.replace('\n', '').split()
- utt2spk[l[0]] = l[1]
- option = onnxruntime.SessionOptions()
- option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
- option.intra_op_num_threads = 1
- providers = ["CPUExecutionProvider"]
- ort_session = onnxruntime.InferenceSession(args.onnx_path, sess_options=option, providers=providers)
- utt2embedding, spk2embedding = {}, {}
- for utt in tqdm(utt2wav.keys()):
- audio, sample_rate = torchaudio.load(utt2wav[utt])
- if sample_rate != 16000:
- audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
- feat = kaldi.fbank(audio,
- num_mel_bins=80,
- dither=0,
- sample_frequency=16000)
- feat = feat - feat.mean(dim=0, keepdim=True)
- embedding = ort_session.run(None, {ort_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
- utt2embedding[utt] = embedding
- spk = utt2spk[utt]
- if spk not in spk2embedding:
- spk2embedding[spk] = []
- spk2embedding[spk].append(embedding)
- for k, v in spk2embedding.items():
- spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
- torch.save(utt2embedding, '{}/utt2embedding.pt'.format(args.dir))
- torch.save(spk2embedding, '{}/spk2embedding.pt'.format(args.dir))
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument('--dir',
- type=str)
- parser.add_argument('--onnx_path',
- type=str)
- args = parser.parse_args()
- main(args)
|