|
|
@@ -12,6 +12,13 @@
|
|
|
# See the License for the specific language governing permissions and
|
|
|
# limitations under the License.
|
|
|
import torch
|
|
|
+import numpy as np
|
|
|
+import threading
|
|
|
+import time
|
|
|
+from contextlib import nullcontext
|
|
|
+import uuid
|
|
|
+from cosyvoice.utils.common import fade_in_out
|
|
|
+
|
|
|
|
|
|
class CosyVoiceModel:
|
|
|
|
|
|
@@ -23,38 +30,143 @@ class CosyVoiceModel:
|
|
|
self.llm = llm
|
|
|
self.flow = flow
|
|
|
self.hift = hift
|
|
|
+ self.token_min_hop_len = 100
|
|
|
+ self.token_max_hop_len = 200
|
|
|
+ self.token_overlap_len = 20
|
|
|
+ # mel fade in out
|
|
|
+ self.mel_overlap_len = 34
|
|
|
+ self.mel_window = np.hamming(2 * self.mel_overlap_len)
|
|
|
+ # hift cache
|
|
|
+ self.mel_cache_len = 20
|
|
|
+ self.source_cache_len = int(self.mel_cache_len * 256)
|
|
|
+ # rtf and decoding related
|
|
|
+ self.stream_scale_factor = 1
|
|
|
+ assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
|
|
|
+ self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
|
|
+ self.flow_hift_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
|
|
+ self.lock = threading.Lock()
|
|
|
+ # dict used to store session related variable
|
|
|
+ self.tts_speech_token_dict = {}
|
|
|
+ self.llm_end_dict = {}
|
|
|
+ self.mel_overlap_dict = {}
|
|
|
+ self.hift_cache_dict = {}
|
|
|
|
|
|
def load(self, llm_model, flow_model, hift_model):
|
|
|
self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
|
|
|
self.llm.to(self.device).eval()
|
|
|
+ self.llm.half()
|
|
|
self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
|
|
|
self.flow.to(self.device).eval()
|
|
|
self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
|
|
|
self.hift.to(self.device).eval()
|
|
|
|
|
|
- def inference(self, text, text_len, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
|
|
- prompt_text=torch.zeros(1, 0, dtype=torch.int32), prompt_text_len=torch.zeros(1, dtype=torch.int32),
|
|
|
- llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), llm_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
|
|
- flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32), flow_prompt_speech_token_len=torch.zeros(1, dtype=torch.int32),
|
|
|
- prompt_speech_feat=torch.zeros(1, 0, 80), prompt_speech_feat_len=torch.zeros(1, dtype=torch.int32)):
|
|
|
- tts_speech_token = self.llm.inference(text=text.to(self.device),
|
|
|
- text_len=text_len.to(self.device),
|
|
|
- prompt_text=prompt_text.to(self.device),
|
|
|
- prompt_text_len=prompt_text_len.to(self.device),
|
|
|
- prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
|
|
- prompt_speech_token_len=llm_prompt_speech_token_len.to(self.device),
|
|
|
- embedding=llm_embedding.to(self.device),
|
|
|
- beam_size=1,
|
|
|
- sampling=25,
|
|
|
- max_token_text_ratio=30,
|
|
|
- min_token_text_ratio=3)
|
|
|
- tts_mel = self.flow.inference(token=tts_speech_token,
|
|
|
- token_len=torch.tensor([tts_speech_token.size(1)], dtype=torch.int32).to(self.device),
|
|
|
- prompt_token=flow_prompt_speech_token.to(self.device),
|
|
|
- prompt_token_len=flow_prompt_speech_token_len.to(self.device),
|
|
|
- prompt_feat=prompt_speech_feat.to(self.device),
|
|
|
- prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
|
|
- embedding=flow_embedding.to(self.device))
|
|
|
- tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
|
|
- torch.cuda.empty_cache()
|
|
|
- return {'tts_speech': tts_speech}
|
|
|
+ def load_jit(self, llm_text_encoder_model, llm_llm_model):
|
|
|
+ llm_text_encoder = torch.jit.load(llm_text_encoder_model)
|
|
|
+ self.llm.text_encoder = llm_text_encoder
|
|
|
+ llm_llm = torch.jit.load(llm_llm_model)
|
|
|
+ self.llm.llm = llm_llm
|
|
|
+
|
|
|
+ def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
|
|
+ with self.llm_context:
|
|
|
+ for i in self.llm.inference(text=text.to(self.device),
|
|
|
+ text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
|
|
|
+ prompt_text=prompt_text.to(self.device),
|
|
|
+ prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
|
|
|
+ prompt_speech_token=llm_prompt_speech_token.to(self.device),
|
|
|
+ prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
|
|
|
+ embedding=llm_embedding.to(self.device).half(),
|
|
|
+ sampling=25,
|
|
|
+ max_token_text_ratio=30,
|
|
|
+ min_token_text_ratio=3):
|
|
|
+ self.tts_speech_token_dict[uuid].append(i)
|
|
|
+ self.llm_end_dict[uuid] = True
|
|
|
+
|
|
|
+ def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False):
|
|
|
+ with self.flow_hift_context:
|
|
|
+ tts_mel = self.flow.inference(token=token.to(self.device),
|
|
|
+ token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
|
|
+ prompt_token=prompt_token.to(self.device),
|
|
|
+ prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
|
|
+ prompt_feat=prompt_feat.to(self.device),
|
|
|
+ prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
|
|
+ embedding=embedding.to(self.device))
|
|
|
+ # mel overlap fade in out
|
|
|
+ if self.mel_overlap_dict[uuid] is not None:
|
|
|
+ tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
|
|
|
+ # append hift cache
|
|
|
+ if self.hift_cache_dict[uuid] is not None:
|
|
|
+ hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
|
|
+ tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
|
|
+ else:
|
|
|
+ hift_cache_source = torch.zeros(1, 1, 0)
|
|
|
+ # keep overlap mel and hift cache
|
|
|
+ if finalize is False:
|
|
|
+ self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
|
|
|
+ tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
|
|
|
+ tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
|
|
+ self.hift_cache_dict[uuid] = {'source': tts_source[:, :, -self.source_cache_len:], 'mel': tts_mel[:, :, -self.mel_cache_len:]}
|
|
|
+ tts_speech = tts_speech[:, :-self.source_cache_len]
|
|
|
+ else:
|
|
|
+ tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
|
|
+ return tts_speech
|
|
|
+
|
|
|
+ def inference(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
|
|
|
+ prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
|
|
+ llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
|
|
+ flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
|
|
+ prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, **kwargs):
|
|
|
+ # this_uuid is used to track variables related to this inference thread
|
|
|
+ this_uuid = str(uuid.uuid1())
|
|
|
+ with self.lock:
|
|
|
+ self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid], self.mel_overlap_dict[this_uuid], self.hift_cache_dict[this_uuid] = [], False, None, None
|
|
|
+ p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
|
|
+ p.start()
|
|
|
+ if stream is True:
|
|
|
+ token_hop_len = self.token_min_hop_len
|
|
|
+ while True:
|
|
|
+ time.sleep(0.1)
|
|
|
+ if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
|
|
|
+ this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len], dim=1)
|
|
|
+ with self.flow_hift_context:
|
|
|
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
|
+ prompt_token=flow_prompt_speech_token,
|
|
|
+ prompt_feat=prompt_speech_feat,
|
|
|
+ embedding=flow_embedding,
|
|
|
+ uuid=this_uuid,
|
|
|
+ finalize=False)
|
|
|
+ yield {'tts_speech': this_tts_speech.cpu()}
|
|
|
+ with self.lock:
|
|
|
+ self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
|
|
|
+ # increase token_hop_len for better speech quality
|
|
|
+ token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
|
|
|
+ if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
|
|
|
+ break
|
|
|
+ p.join()
|
|
|
+ # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
|
|
+ this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
|
|
|
+ with self.flow_hift_context:
|
|
|
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
|
+ prompt_token=flow_prompt_speech_token,
|
|
|
+ prompt_feat=prompt_speech_feat,
|
|
|
+ embedding=flow_embedding,
|
|
|
+ uuid=this_uuid,
|
|
|
+ finalize=True)
|
|
|
+ yield {'tts_speech': this_tts_speech.cpu()}
|
|
|
+ else:
|
|
|
+ # deal with all tokens
|
|
|
+ p.join()
|
|
|
+ this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
|
|
|
+ with self.flow_hift_context:
|
|
|
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
|
|
+ prompt_token=flow_prompt_speech_token,
|
|
|
+ prompt_feat=prompt_speech_feat,
|
|
|
+ embedding=flow_embedding,
|
|
|
+ uuid=this_uuid,
|
|
|
+ finalize=True)
|
|
|
+ yield {'tts_speech': this_tts_speech.cpu()}
|
|
|
+ with self.lock:
|
|
|
+ self.tts_speech_token_dict.pop(this_uuid)
|
|
|
+ self.llm_end_dict.pop(this_uuid)
|
|
|
+ self.mel_overlap_dict.pop(this_uuid)
|
|
|
+ self.hift_cache_dict.pop(this_uuid)
|
|
|
+ torch.cuda.synchronize()
|