lyuxiang.lx 5 meses atrás
pai
commit
63856565f3

+ 1 - 0
cosyvoice/bin/inference.py → cosyvoice/bin/inference_deprecated.py

@@ -122,4 +122,5 @@ def main():
 
 
 if __name__ == '__main__':
+    logging.warning('this code has been deprecated, please refer to README for CosyVoice inference usage!')
     main()

+ 23 - 3
cosyvoice/bin/train.py

@@ -27,6 +27,7 @@ from hyperpyyaml import load_hyperpyyaml
 
 from torch.distributed.elastic.multiprocessing.errors import record
 
+from cosyvoice.utils.losses import DPOLoss
 from cosyvoice.utils.executor import Executor
 from cosyvoice.utils.train_utils import (
     init_distributed,
@@ -43,6 +44,7 @@ def get_args():
                         choices=['torch_ddp', 'deepspeed'],
                         help='Engine for paralleled training')
     parser.add_argument('--model', required=True, help='model which will be trained')
+    parser.add_argument('--ref_model', required=False, help='ref model used in dpo')
     parser.add_argument('--config', required=True, help='config file')
     parser.add_argument('--train_data', required=True, help='train data file')
     parser.add_argument('--cv_data', required=True, help='cv data file')
@@ -73,6 +75,10 @@ def get_args():
                         action='store_true',
                         default=False,
                         help='Use automatic mixed precision training')
+    parser.add_argument('--dpo',
+                        action='store_true',
+                        default=False,
+                        help='Use Direct Preference Optimization')
     parser.add_argument('--deepspeed.save_states',
                         dest='save_states',
                         default='model_only',
@@ -113,7 +119,7 @@ def main():
 
     # Get dataset & dataloader
     train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
-        init_dataset_and_dataloader(args, configs, gan)
+        init_dataset_and_dataloader(args, configs, gan, args.dpo)
 
     # Do some sanity checks and save config to arsg.model_dir
     configs = check_modify_and_save_config(args, configs)
@@ -122,6 +128,8 @@ def main():
     writer = init_summarywriter(args)
 
     # load checkpoint
+    if args.dpo is True:
+        configs[args.model].forward = configs[args.model].forward_dpo
     model = configs[args.model]
     start_step, start_epoch = 0, -1
     if args.checkpoint is not None:
@@ -150,13 +158,25 @@ def main():
     info_dict['epoch'] = start_epoch
     save_model(model, 'init', info_dict)
 
+    # DPO related
+    if args.dpo is True:
+        ref_model = deepcopy(configs[args.model])
+        state_dict = torch.load(args.ref_model, map_location='cpu')
+        ref_model.load_state_dict(state_dict, strict=False)
+        dpo_loss = DPOLoss(beta=0.01, label_smoothing=0.0, ipo=False)
+        # NOTE maybe it is not needed to wrap ref_model as ddp because its parameter is not updated
+        ref_model = wrap_cuda_model(args, ref_model)
+    else:
+        ref_model, dpo_loss = None, None
+
     # Get executor
-    executor = Executor(gan=gan)
+    executor = Executor(gan=gan, ref_model=ref_model, dpo_loss=dpo_loss)
     executor.step = start_step
 
     # Init scaler, used for pytorch amp mixed precision training
     scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
     print('start step {} start epoch {}'.format(start_step, start_epoch))
+
     # Start training loop
     for epoch in range(start_epoch + 1, info_dict['max_epoch']):
         executor.epoch = epoch
@@ -167,7 +187,7 @@ def main():
             executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
                                         writer, info_dict, scaler, group_join)
         else:
-            executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join)
+            executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=ref_model)
         dist.destroy_process_group(group_join)
 
 

+ 0 - 187
cosyvoice/bin/train_dpo.py

@@ -1,187 +0,0 @@
-# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#   http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-from __future__ import print_function
-import argparse
-import datetime
-import logging
-logging.getLogger('matplotlib').setLevel(logging.WARNING)
-from copy import deepcopy
-import os
-import torch
-import torch.distributed as dist
-import deepspeed
-
-from hyperpyyaml import load_hyperpyyaml
-
-from torch.distributed.elastic.multiprocessing.errors import record
-
-from cosyvoice.utils.executor_dpo import Executor
-from cosyvoice.utils.train_utils_dpo import (
-    init_distributed,
-    init_dataset_and_dataloader,
-    init_optimizer_and_scheduler,
-    init_summarywriter, save_model,
-    wrap_cuda_model, check_modify_and_save_config)
-
-
-def get_args():
-    parser = argparse.ArgumentParser(description='training your network')
-    parser.add_argument('--train_engine',
-                        default='torch_ddp',
-                        choices=['torch_ddp', 'deepspeed'],
-                        help='Engine for paralleled training')
-    parser.add_argument('--model', required=True, help='model which will be trained')
-    parser.add_argument('--config', required=True, help='config file')
-    parser.add_argument('--train_data', required=True, help='train data file')
-    parser.add_argument('--cv_data', required=True, help='cv data file')
-    parser.add_argument('--checkpoint', help='checkpoint model')
-    parser.add_argument('--model_dir', required=True, help='save model dir')
-    parser.add_argument('--tensorboard_dir',
-                        default='tensorboard',
-                        help='tensorboard log dir')
-    parser.add_argument('--ddp.dist_backend',
-                        dest='dist_backend',
-                        default='nccl',
-                        choices=['nccl', 'gloo'],
-                        help='distributed backend')
-    parser.add_argument('--num_workers',
-                        default=0,
-                        type=int,
-                        help='num of subprocess workers for reading')
-    parser.add_argument('--prefetch',
-                        default=100,
-                        type=int,
-                        help='prefetch number')
-    parser.add_argument('--pin_memory',
-                        action='store_true',
-                        default=False,
-                        help='Use pinned memory buffers used for reading')
-    parser.add_argument('--use_amp',
-                        action='store_true',
-                        default=False,
-                        help='Use automatic mixed precision training')
-    parser.add_argument('--deepspeed.save_states',
-                        dest='save_states',
-                        default='model_only',
-                        choices=['model_only', 'model+optimizer'],
-                        help='save model/optimizer states')
-    parser.add_argument('--timeout',
-                        default=60,
-                        type=int,
-                        help='timeout (in seconds) of cosyvoice_join.')
-    parser.add_argument('--dpo',
-                        action='store_true',
-                        default=False,
-                        help='Use Direct Preference Optimization')
-    parser.add_argument('--beta',
-                        default=0.01,
-                        type=float,
-                        help='beta of dpo training')
-    parser = deepspeed.add_config_arguments(parser)
-    args = parser.parse_args()
-    return args
-
-
-@record
-def main():
-    args = get_args()
-    logging.basicConfig(level=logging.DEBUG,
-                        format='%(asctime)s %(levelname)s %(message)s')
-    # gan train has some special initialization logic
-    gan = True if args.model == 'hifigan' else False
-
-    override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
-    if gan is True:
-        override_dict.pop('hift')
-    with open(args.config, 'r') as f:
-        configs = load_hyperpyyaml(f, overrides=override_dict)
-    if gan is True:
-        configs['train_conf'] = configs['train_conf_gan']
-    configs['train_conf'].update(vars(args))
-
-    # Init env for ddp
-    init_distributed(args)
-
-    # Get dataset & dataloader
-    train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
-        init_dataset_and_dataloader(args, configs, gan)
-
-    # Do some sanity checks and save config to arsg.model_dir
-    configs = check_modify_and_save_config(args, configs)
-
-    # Tensorboard summary
-    writer = init_summarywriter(args)
-
-    # load checkpoint
-    model = configs[args.model]
-    ref_model = None
-    if args.dpo:
-        ref_model = deepcopy(model)
-    start_step, start_epoch = 0, -1
-    if args.checkpoint is not None:
-        if os.path.exists(args.checkpoint):
-            state_dict = torch.load(args.checkpoint, map_location='cpu')
-            model.load_state_dict(state_dict, strict=False)
-            if args.dpo:
-                ref_model.load_state_dict(state_dict, strict=False)
-            if 'step' in state_dict:
-                start_step = state_dict['step']
-            if 'epoch' in state_dict:
-                start_epoch = state_dict['epoch']
-        else:
-            logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
-
-    # Dispatch model from cpu to gpu
-    model = wrap_cuda_model(args, model)
-    if args.dpo:
-        ref_model = wrap_cuda_model(args, ref_model)
-
-    # Get optimizer & scheduler
-    model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan)
-    if args.dpo:
-        ref_model, _, _, _, _ = init_optimizer_and_scheduler(args, configs, ref_model, gan)
-    scheduler.set_step(start_step)
-    if scheduler_d is not None:
-        scheduler_d.set_step(start_step)
-
-    # Save init checkpoints
-    info_dict = deepcopy(configs['train_conf'])
-    info_dict['step'] = start_step
-    info_dict['epoch'] = start_epoch
-    save_model(model, 'init', info_dict)
-
-    # Get executor
-    executor = Executor(gan=gan, dpo=args.dpo, beta=args.beta)
-    executor.step = start_step
-
-    # Init scaler, used for pytorch amp mixed precision training
-    scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
-    print('start step {} start epoch {}'.format(start_step, start_epoch))
-    # Start training loop
-    for epoch in range(start_epoch + 1, info_dict['max_epoch']):
-        executor.epoch = epoch
-        train_dataset.set_epoch(epoch)
-        dist.barrier()
-        group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
-        if gan is True:
-            executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
-                                        writer, info_dict, scaler, group_join)
-        else:
-            executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model)
-        dist.destroy_process_group(group_join)
-
-
-if __name__ == '__main__':
-    main()

+ 2 - 1
cosyvoice/cli/model.py

@@ -103,7 +103,7 @@ class CosyVoiceModel:
     def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
         with self.llm_context, torch.cuda.amp.autocast(self.fp16 is True and hasattr(self.llm, 'vllm') is False):
             if isinstance(text, Generator):
-                assert isinstance(self, CosyVoice2Model), 'streaming input text is only implemented for CosyVoice2!'
+                assert isinstance(self, CosyVoice2Model) and not hasattr(self.llm, 'vllm'), 'streaming input text is only implemented for CosyVoice2 and do not support vllm!'
                 for i in self.llm.inference_bistream(text=text,
                                                      prompt_text=prompt_text.to(self.device),
                                                      prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
@@ -279,6 +279,7 @@ class CosyVoice2Model(CosyVoiceModel):
                                  enable_prompt_embeds=True,
                                  gpu_memory_utilization=0.2)
         self.llm.vllm = LLMEngine.from_engine_args(engine_args)
+        self.llm.lock = threading.Lock()
         del self.llm.llm.model.model.layers
 
     def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, stream=False, finalize=False, speed=1.0):

+ 5 - 18
cosyvoice/dataset/dataset.py

@@ -14,14 +14,13 @@
 # limitations under the License.
 
 import random
-import json
 import math
 from functools import partial
 
 import torch
 import torch.distributed as dist
 from torch.utils.data import IterableDataset
-from cosyvoice.utils.file_utils import read_lists, read_json_lists
+from cosyvoice.utils.file_utils import read_lists
 
 
 class Processor(IterableDataset):
@@ -127,10 +126,9 @@ def Dataset(data_list_file,
             data_pipeline,
             mode='train',
             gan=False,
+            dpo=False,
             shuffle=True,
-            partition=True,
-            tts_file='',
-            prompt_utt2data=''):
+            partition=True):
     """ Construct dataset from arguments
 
         We have two shuffle stage in the Dataset. The first is global
@@ -142,23 +140,12 @@ def Dataset(data_list_file,
             tokenizer (BaseTokenizer): tokenizer to tokenize
             partition(bool): whether to do data partition in terms of rank
     """
-    assert mode in ['train', 'inference']
     lists = read_lists(data_list_file)
-    if mode == 'inference':
-        with open(tts_file) as f:
-            tts_data = json.load(f)
-        utt2lists = read_json_lists(prompt_utt2data)
-        # filter unnecessary file in inference mode
-        lists = list({utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists})
     dataset = DataList(lists,
                        shuffle=shuffle,
                        partition=partition)
-    if mode == 'inference':
-        # map partial arg to parquet_opener func in inference mode
-        data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
-    if gan is True:
-        # map partial arg to padding func in gan mode
-        data_pipeline[-1] = partial(data_pipeline[-1], gan=gan)
+    # map partial arg to padding func
+    data_pipeline[-1] = partial(data_pipeline[-1], gan=gan, dpo=dpo)
     for func in data_pipeline:
         dataset = Processor(dataset, func, mode=mode)
     return dataset

+ 16 - 23
cosyvoice/dataset/processor.py

@@ -43,8 +43,6 @@ def parquet_opener(data, mode='train', tts_data={}):
             for df in pq.ParquetFile(url).iter_batches(batch_size=64):
                 df = df.to_pandas()
                 for i in range(len(df)):
-                    if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
-                        continue
                     sample.update(dict(df.loc[i]))
                     if mode == 'train':
                         # NOTE do not return sample directly, must initialize a new dict
@@ -100,6 +98,8 @@ def filter(data,
             continue
         if len(sample['speech_token']) == 0:
             continue
+        if 'reject_speech_token' in sample and len(sample['reject_speech_token']) == 0:
+            continue
         if num_frames != 0:
             if len(sample['text_token']) / num_frames < min_output_input_ratio:
                 continue
@@ -242,8 +242,6 @@ def tokenize(data, get_tokenizer, allowed_special, mode='train'):
     for sample in data:
         assert 'text' in sample
         sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
-        if mode == 'inference':
-            sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special)
         yield sample
 
 
@@ -351,18 +349,15 @@ def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
 def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
     """ Wrapper for static/dynamic batch
     """
-    if mode == 'inference':
-        return static_batch(data, 1)
+    if batch_type == 'static':
+        return static_batch(data, batch_size)
+    elif batch_type == 'dynamic':
+        return dynamic_batch(data, max_frames_in_batch)
     else:
-        if batch_type == 'static':
-            return static_batch(data, batch_size)
-        elif batch_type == 'dynamic':
-            return dynamic_batch(data, max_frames_in_batch)
-        else:
-            logging.fatal('Unsupported batch type {}'.format(batch_type))
+        logging.fatal('Unsupported batch type {}'.format(batch_type))
 
 
-def padding(data, use_spk_embedding, mode='train', gan=False):
+def padding(data, use_spk_embedding, mode='train', gan=False, dpo=False):
     """ Padding the data into training data
 
         Args:
@@ -424,16 +419,14 @@ def padding(data, use_spk_embedding, mode='train', gan=False):
             # only gan train needs speech, delete it to save memory
             del batch["speech"]
             del batch["speech_len"]
-        if mode == 'inference':
-            tts_text = [sample[i]['tts_text'] for i in order]
-            tts_index = [sample[i]['tts_index'] for i in order]
-            tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
-            tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
-            tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
-            batch.update({'tts_text': tts_text,
-                          'tts_index': tts_index,
-                          'tts_text_token': tts_text_token,
-                          'tts_text_token_len': tts_text_token_len})
+        if dpo is True:
+            reject_speech_token = [torch.tensor(sample[i]['reject_speech_token']) for i in order]
+            reject_speech_token_len = torch.tensor([i.size(0) for i in reject_speech_token], dtype=torch.int32)
+            reject_speech_token = pad_sequence(reject_speech_token,
+                                               batch_first=True,
+                                               padding_value=0)
+            batch['reject_speech_token'] = reject_speech_token
+            batch['reject_speech_token_len'] = reject_speech_token_len
         if use_spk_embedding is True:
             batch["embedding"] = batch["spk_embedding"]
         else:

+ 0 - 443
cosyvoice/dataset/processor_dpo.py

@@ -1,443 +0,0 @@
-# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-import logging
-import random
-
-import pyarrow.parquet as pq
-from io import BytesIO
-import torch
-import torchaudio
-from torch.nn.utils.rnn import pad_sequence
-import torch.nn.functional as F
-import pyworld as pw
-
-
-AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
-
-
-def parquet_opener(data, mode='train', tts_data={}):
-    """ Give url or local file, return file descriptor
-        Inplace operation.
-
-        Args:
-            data(Iterable[str]): url or local file list
-
-        Returns:
-            Iterable[{src, stream}]
-    """
-    for sample in data:
-        assert 'src' in sample
-        url = sample['src']
-        try:
-            for df in pq.ParquetFile(url).iter_batches(batch_size=64):
-                df = df.to_pandas()
-                for i in range(len(df)):
-                    if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
-                        continue
-                    sample.update(dict(df.loc[i]))
-                    if mode == 'train':
-                        # NOTE do not return sample directly, must initialize a new dict
-                        yield {**sample}
-                    else:
-                        for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
-                            yield {**sample, 'tts_index': index, 'tts_text': text}
-        except Exception as ex:
-            logging.warning('Failed to open {}, ex info {}'.format(url, ex))
-
-
-def filter(data,
-           max_length=10240,
-           min_length=10,
-           token_max_length=200,
-           token_min_length=1,
-           min_output_input_ratio=0.0005,
-           max_output_input_ratio=1,
-           mode='train'):
-    """ Filter sample according to feature and label length
-        Inplace operation.
-
-        Args::
-            data: Iterable[{key, wav, label, sample_rate}]
-            max_length: drop utterance which is greater than max_length(10ms)
-            min_length: drop utterance which is less than min_length(10ms)
-            token_max_length: drop utterance which is greater than
-                token_max_length, especially when use char unit for
-                english modeling
-            token_min_length: drop utterance which is
-                less than token_max_length
-            min_output_input_ratio: minimal ration of
-                token_length / feats_length(10ms)
-            max_output_input_ratio: maximum ration of
-                token_length / feats_length(10ms)
-
-        Returns:
-            Iterable[{key, wav, label, sample_rate}]
-    """
-    for sample in data:
-        sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
-        sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
-        del sample['audio_data']
-        # sample['wav'] is torch.Tensor, we have 100 frames every second
-        num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
-        if num_frames < min_length:
-            continue
-        if num_frames > max_length:
-            continue
-        if len(sample['text_token']) < token_min_length:
-            continue
-        if len(sample['text_token']) > token_max_length:
-            continue
-        if len(sample['speech_token']) == 0:
-            continue
-        if num_frames != 0:
-            if len(sample['text_token']) / num_frames < min_output_input_ratio:
-                continue
-            if len(sample['text_token']) / num_frames > max_output_input_ratio:
-                continue
-        yield sample
-
-
-def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
-    """ Resample data.
-        Inplace operation.
-
-        Args:
-            data: Iterable[{key, wav, label, sample_rate}]
-            resample_rate: target resample rate
-
-        Returns:
-            Iterable[{key, wav, label, sample_rate}]
-    """
-    for sample in data:
-        assert 'sample_rate' in sample
-        assert 'speech' in sample
-        sample_rate = sample['sample_rate']
-        waveform = sample['speech']
-        if sample_rate != resample_rate:
-            if sample_rate < min_sample_rate:
-                continue
-            sample['sample_rate'] = resample_rate
-            sample['speech'] = torchaudio.transforms.Resample(
-                orig_freq=sample_rate, new_freq=resample_rate)(waveform)
-        max_val = sample['speech'].abs().max()
-        if max_val > 1:
-            sample['speech'] /= max_val
-        yield sample
-
-
-def truncate(data, truncate_length=24576, mode='train'):
-    """ Truncate data.
-
-        Args:
-            data: Iterable[{key, wav, label, sample_rate}]
-            truncate_length: truncate length
-
-        Returns:
-            Iterable[{key, wav, label, sample_rate}]
-    """
-    for sample in data:
-        waveform = sample['speech']
-        if waveform.shape[1] > truncate_length:
-            start = random.randint(0, waveform.shape[1] - truncate_length)
-            waveform = waveform[:, start: start + truncate_length]
-        else:
-            waveform = torch.concat([waveform, torch.zeros(1, truncate_length - waveform.shape[1])], dim=1)
-        sample['speech'] = waveform
-        yield sample
-
-
-def compute_fbank(data,
-                  feat_extractor,
-                  mode='train'):
-    """ Extract fbank
-
-        Args:
-            data: Iterable[{key, wav, label, sample_rate}]
-
-        Returns:
-            Iterable[{key, feat, label}]
-    """
-    for sample in data:
-        assert 'sample_rate' in sample
-        assert 'speech' in sample
-        assert 'utt' in sample
-        assert 'text_token' in sample
-        waveform = sample['speech']
-        mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
-        sample['speech_feat'] = mat
-        yield sample
-
-
-def compute_f0(data, sample_rate, hop_size, mode='train'):
-    """ Extract f0
-
-        Args:
-            data: Iterable[{key, wav, label, sample_rate}]
-
-        Returns:
-            Iterable[{key, feat, label}]
-    """
-    frame_period = hop_size * 1000 / sample_rate
-    for sample in data:
-        assert 'sample_rate' in sample
-        assert 'speech' in sample
-        assert 'utt' in sample
-        assert 'text_token' in sample
-        waveform = sample['speech']
-        _f0, t = pw.harvest(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period)
-        if sum(_f0 != 0) < 5: # this happens when the algorithm fails
-            _f0, t = pw.dio(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period) # if harvest fails, try dio
-        f0 = pw.stonemask(waveform.squeeze(dim=0).numpy().astype('double'), _f0, t, sample_rate)
-        f0 = F.interpolate(torch.from_numpy(f0).view(1, 1, -1), size=sample['speech_feat'].shape[0], mode='linear').view(-1)
-        sample['pitch_feat'] = f0
-        yield sample
-
-
-def parse_embedding(data, normalize, mode='train'):
-    """ Parse utt_embedding/spk_embedding
-
-        Args:
-            data: Iterable[{key, wav, label, sample_rate}]
-
-        Returns:
-            Iterable[{key, feat, label}]
-    """
-    for sample in data:
-        sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
-        sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
-        if normalize:
-            sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
-            sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
-        yield sample
-
-
-def tokenize(data, get_tokenizer, allowed_special, mode='train'):
-    """ Decode text to chars or BPE
-        Inplace operation
-
-        Args:
-            data: Iterable[{key, wav, txt, sample_rate}]
-
-        Returns:
-            Iterable[{key, wav, txt, tokens, label, sample_rate}]
-    """
-    tokenizer = get_tokenizer()
-    for sample in data:
-        assert 'text' in sample
-        sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
-        if mode == 'inference':
-            sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special)
-        yield sample
-
-
-def shuffle(data, shuffle_size=10000, mode='train'):
-    """ Local shuffle the data
-
-        Args:
-            data: Iterable[{key, feat, label}]
-            shuffle_size: buffer size for shuffle
-
-        Returns:
-            Iterable[{key, feat, label}]
-    """
-    buf = []
-    for sample in data:
-        buf.append(sample)
-        if len(buf) >= shuffle_size:
-            random.shuffle(buf)
-            for x in buf:
-                yield x
-            buf = []
-    # The sample left over
-    random.shuffle(buf)
-    for x in buf:
-        yield x
-
-
-def sort(data, sort_size=500, mode='train'):
-    """ Sort the data by feature length.
-        Sort is used after shuffle and before batch, so we can group
-        utts with similar lengths into a batch, and `sort_size` should
-        be less than `shuffle_size`
-
-        Args:
-            data: Iterable[{key, feat, label}]
-            sort_size: buffer size for sort
-
-        Returns:
-            Iterable[{key, feat, label}]
-    """
-
-    buf = []
-    for sample in data:
-        buf.append(sample)
-        if len(buf) >= sort_size:
-            buf.sort(key=lambda x: x['speech_feat'].size(0))
-            for x in buf:
-                yield x
-            buf = []
-    # The sample left over
-    buf.sort(key=lambda x: x['speech_feat'].size(0))
-    for x in buf:
-        yield x
-
-
-def static_batch(data, batch_size=16):
-    """ Static batch the data by `batch_size`
-
-        Args:
-            data: Iterable[{key, feat, label}]
-            batch_size: batch size
-
-        Returns:
-            Iterable[List[{key, feat, label}]]
-    """
-    buf = []
-    for sample in data:
-        buf.append(sample)
-        if len(buf) >= batch_size:
-            yield buf
-            buf = []
-    if len(buf) > 0:
-        yield buf
-
-
-def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
-    """ Dynamic batch the data until the total frames in batch
-        reach `max_frames_in_batch`
-
-        Args:
-            data: Iterable[{key, feat, label}]
-            max_frames_in_batch: max_frames in one batch
-
-        Returns:
-            Iterable[List[{key, feat, label}]]
-    """
-    buf = []
-    longest_frames = 0
-    for sample in data:
-        assert 'speech_feat' in sample
-        assert isinstance(sample['speech_feat'], torch.Tensor)
-        new_sample_frames = sample['speech_feat'].size(0)
-        longest_frames = max(longest_frames, new_sample_frames)
-        frames_after_padding = longest_frames * (len(buf) + 1)
-        if frames_after_padding > max_frames_in_batch:
-            yield buf
-            buf = [sample]
-            longest_frames = new_sample_frames
-        else:
-            buf.append(sample)
-    if len(buf) > 0:
-        yield buf
-
-
-def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
-    """ Wrapper for static/dynamic batch
-    """
-    if mode == 'inference':
-        return static_batch(data, 1)
-    else:
-        if batch_type == 'static':
-            return static_batch(data, batch_size)
-        elif batch_type == 'dynamic':
-            return dynamic_batch(data, max_frames_in_batch)
-        else:
-            logging.fatal('Unsupported batch type {}'.format(batch_type))
-
-
-def padding(data, use_spk_embedding, mode='train', gan=False, dpo=False):
-    """ Padding the data into training data
-
-        Args:
-            data: Iterable[List[{key, feat, label}]]
-
-        Returns:
-            Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
-    """
-    for sample in data:
-        assert isinstance(sample, list)
-        speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
-                                       dtype=torch.int32)
-        order = torch.argsort(speech_feat_len, descending=True)
-
-        utts = [sample[i]['utt'] for i in order]
-        speech = [sample[i]['speech'].squeeze(dim=0) for i in order]
-        speech_len = torch.tensor([i.size(0) for i in speech], dtype=torch.int32)
-        speech = pad_sequence(speech, batch_first=True, padding_value=0)
-        speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
-        speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
-        speech_token = pad_sequence(speech_token,
-                                    batch_first=True,
-                                    padding_value=0)
-        speech_feat = [sample[i]['speech_feat'] for i in order]
-        speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
-        speech_feat = pad_sequence(speech_feat,
-                                   batch_first=True,
-                                   padding_value=0)
-        text = [sample[i]['text'] for i in order]
-        text_token = [torch.tensor(sample[i]['text_token']) for i in order]
-        text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
-        text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
-        utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
-        spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
-        batch = {
-            "utts": utts,
-            "speech": speech,
-            "speech_len": speech_len,
-            "speech_token": speech_token,
-            "speech_token_len": speech_token_len,
-            "speech_feat": speech_feat,
-            "speech_feat_len": speech_feat_len,
-            "text": text,
-            "text_token": text_token,
-            "text_token_len": text_token_len,
-            "utt_embedding": utt_embedding,
-            "spk_embedding": spk_embedding,
-        }
-        if dpo:
-            reject_speech_token = [torch.tensor(sample[i]['reject_speech_token']) for i in order]
-            reject_speech_token_len = torch.tensor([i.size(0) for i in reject_speech_token], dtype=torch.int32)
-            reject_speech_token = pad_sequence(reject_speech_token,
-                                                batch_first=True,
-                                                padding_value=0)
-            batch['reject_speech_token'] = reject_speech_token
-            batch['reject_speech_token_len'] = reject_speech_token_len
-        if gan is True:
-            # in gan train, we need pitch_feat
-            pitch_feat = [sample[i]['pitch_feat'] for i in order]
-            pitch_feat_len = torch.tensor([i.size(0) for i in pitch_feat], dtype=torch.int32)
-            pitch_feat = pad_sequence(pitch_feat,
-                                      batch_first=True,
-                                      padding_value=0)
-            batch["pitch_feat"] = pitch_feat
-            batch["pitch_feat_len"] = pitch_feat_len
-        else:
-            # only gan train needs speech, delete it to save memory
-            del batch["speech"]
-            del batch["speech_len"]
-        if mode == 'inference':
-            tts_text = [sample[i]['tts_text'] for i in order]
-            tts_index = [sample[i]['tts_index'] for i in order]
-            tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
-            tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
-            tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
-            batch.update({'tts_text': tts_text,
-                          'tts_index': tts_index,
-                          'tts_text_token': tts_text_token,
-                          'tts_text_token_len': tts_text_token_len})
-        if use_spk_embedding is True:
-            batch["embedding"] = batch["spk_embedding"]
-        else:
-            batch["embedding"] = batch["utt_embedding"]
-        yield batch

+ 46 - 1
cosyvoice/llm/llm.py

@@ -300,7 +300,6 @@ class Qwen2LM(TransformerLM):
         # 5. vllm related
         self.stop_token_ids = [speech_token_size + i for i in range(3)]
         self.vllm_output_queue = {}
-        self.lock = threading.Lock()
 
     def prepare_lm_input_target(self, text_token, text_token_emb, text_token_len, speech_token, speech_token_emb, speech_token_len):
         lm_target, lm_input = [], []
@@ -378,6 +377,52 @@ class Qwen2LM(TransformerLM):
         acc = th_accuracy(logits.view(-1, self.speech_token_size + 3), lm_target, ignore_label=IGNORE_ID)
         return {'loss': loss, 'acc': acc}
 
+    def forward_dpo(
+            self,
+            batch: dict,
+            device: torch.device,
+        ) -> Dict[str, Optional[torch.Tensor]]:
+        text_token = batch['text_token'].to(device)
+        text_token_len = batch['text_token_len'].to(device)
+        speech_token = batch['speech_token'].to(device)
+        speech_token_len = batch['speech_token_len'].to(device)
+        reject_speech_token = batch['reject_speech_token'].to(device)
+        reject_speech_token_len = batch['reject_speech_token_len'].to(device)
+
+        # 1. encode text_token
+        text_token_emb = self.llm.model.model.embed_tokens(text_token)
+
+        # 2. encode speech_token
+        speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
+        reject_speech_token = unpad_sequence(reject_speech_token, reject_speech_token_len.cpu(), batch_first=True)
+        speech_token_combined = speech_token + reject_speech_token
+        speech_token_combined = pad_sequence(speech_token_combined, batch_first=True, padding_value=0)
+        speech_token_combined_len = torch.concat([speech_token_len, reject_speech_token_len], dim=0)
+        speech_token_combined_emb = self.speech_embedding(speech_token_combined)
+
+        # 3. prepare llm_input/target
+        lm_target, lm_input, lm_input_len = self.prepare_lm_input_target(text_token.repeat(2, 1), text_token_emb.repeat(2, 1, 1), text_token_len.repeat(2), speech_token_combined, speech_token_combined_emb, speech_token_combined_len)
+        lm_target = lm_target.to(device)
+
+        # 4. run lm forward
+        lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
+        logits = self.llm_decoder(lm_output)
+        chosen_logits = logits[:text_token.shape[0]]
+        rejected_logits = logits[text_token.shape[0]:]
+        chosen_lm_target = lm_target[:text_token.shape[0]]
+        rejected_lm_target = lm_target[text_token.shape[0]:]
+        loss = self.criterion_ce(chosen_logits, chosen_lm_target.to(device))
+        acc = th_accuracy(chosen_logits.view(-1, self.speech_token_size + 3), chosen_lm_target, ignore_label=IGNORE_ID)
+
+        # 5. calculate dpo logits
+        chosen_lm_mask = chosen_lm_target == IGNORE_ID
+        rejected_lm_mask = rejected_lm_target == IGNORE_ID
+        chosen_logps = torch.gather(chosen_logits.log_softmax(dim=-1), dim=2, index=chosen_lm_target.masked_fill(chosen_lm_mask, 0).unsqueeze(dim=-1)).squeeze(dim=-1)
+        rejected_logps = torch.gather(rejected_logits.log_softmax(dim=-1), dim=2, index=rejected_lm_target.masked_fill(rejected_lm_mask, 0).unsqueeze(dim=-1)).squeeze(dim=-1)
+        chosen_logps = (chosen_logps * chosen_lm_mask).mean(dim=-1)
+        rejected_logps = (rejected_logps * chosen_lm_mask).mean(dim=-1)
+        return {'loss': loss, 'acc': acc, 'chosen_logps': chosen_logps, 'rejected_logps': rejected_logps}
+
     @torch.inference_mode()
     def inference(
             self,

+ 0 - 556
cosyvoice/llm/llm_dpo.py

@@ -1,556 +0,0 @@
-# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-from typing import Dict, Optional, Callable, List, Generator
-import torch
-from torch import nn
-import torch.nn.functional as F
-from transformers import Qwen2ForCausalLM
-from torch.nn.utils.rnn import pad_sequence, unpad_sequence
-from cosyvoice.utils.common import IGNORE_ID
-from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
-from cosyvoice.utils.common import th_accuracy
-from cosyvoice.utils.file_utils import logging
-from cosyvoice.utils.mask import make_pad_mask
-
-
-class TransformerLM(torch.nn.Module):
-    def __init__(
-            self,
-            text_encoder_input_size: int,
-            llm_input_size: int,
-            llm_output_size: int,
-            text_token_size: int,
-            speech_token_size: int,
-            text_encoder: torch.nn.Module,
-            llm: torch.nn.Module,
-            sampling: Callable,
-            length_normalized_loss: bool = True,
-            lsm_weight: float = 0.0,
-            spk_embed_dim: int = 192,
-    ):
-        super().__init__()
-        self.llm_input_size = llm_input_size
-        self.speech_token_size = speech_token_size
-        # 1. build text token inputs related modules
-        self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
-        self.text_encoder = text_encoder
-        self.text_encoder_affine_layer = nn.Linear(
-            self.text_encoder.output_size(),
-            llm_input_size
-        )
-
-        # 2. build speech token language model related modules
-        self.sos_eos = 0
-        self.task_id = 1
-        self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
-        self.llm = llm
-        self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
-        self.criterion_ce = LabelSmoothingLoss(
-            size=speech_token_size + 1,
-            padding_idx=IGNORE_ID,
-            smoothing=lsm_weight,
-            normalize_length=length_normalized_loss,
-        )
-
-        # 3. [Optional] build speech token related modules
-        self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
-        self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
-
-        # 4. sampling method
-        self.sampling = sampling
-
-    def encode(
-            self,
-            text: torch.Tensor,
-            text_lengths: torch.Tensor,
-    ):
-        encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
-        encoder_out_lens = encoder_mask.squeeze(1).sum(1)
-        encoder_out = self.text_encoder_affine_layer(encoder_out)
-        return encoder_out, encoder_out_lens
-
-    def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
-        text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
-        speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
-        lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
-                    for i in range(len(text_token))]
-        lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
-        lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
-        return lm_input, lm_input_len
-
-    def forward(
-            self,
-            batch: dict,
-            device: torch.device,
-    ) -> Dict[str, Optional[torch.Tensor]]:
-        """
-        Args:
-            text: (B, L, D)
-            text_lengths: (B,)
-            audio: (B, T, N) or (B, T)
-            audio_lengths: (B,)
-        """
-        text_token = batch['text_token'].to(device)
-        text_token_len = batch['text_token_len'].to(device)
-        speech_token = batch['speech_token'].to(device)
-        speech_token_len = batch['speech_token_len'].to(device)
-        embedding = batch['embedding'].to(device)
-
-        # 1. prepare llm_target
-        lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
-                                  [self.speech_token_size]) for i in range(text_token.size(0))]
-        lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
-
-        # 1. encode text_token
-        text_token = self.text_embedding(text_token)
-        text_token, text_token_len = self.encode(text_token, text_token_len)
-
-        # 2. embedding projection
-        embedding = F.normalize(embedding, dim=1)
-        embedding = self.spk_embed_affine_layer(embedding)
-        embedding = embedding.unsqueeze(1)
-
-        # 3. eos and task_id
-        sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
-        task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
-
-        # 4. encode speech_token
-        speech_token = self.speech_embedding(speech_token)
-
-        # 5. unpad and pad
-        lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
-                                                         task_id_emb, speech_token, speech_token_len)
-
-        # 6. run lm forward
-        lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
-        logits = self.llm_decoder(lm_output)
-        loss = self.criterion_ce(logits, lm_target)
-        acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
-        return {'loss': loss, 'acc': acc}
-
-    def sampling_ids(
-            self,
-            weighted_scores: torch.Tensor,
-            decoded_tokens: List,
-            sampling: int,
-            ignore_eos: bool = True,
-    ):
-        num_trials, max_trials = 0, 100
-        while True:
-            top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
-            if (not ignore_eos) or (self.speech_token_size not in top_ids):
-                break
-            num_trials += 1
-            if num_trials > max_trials:
-                raise RuntimeError('sampling reaches max_trials {} and still get eos when ignore_eos is True, check your input!'.format(max_trials))
-        return top_ids
-
-    @torch.inference_mode()
-    def inference(
-            self,
-            text: torch.Tensor,
-            text_len: torch.Tensor,
-            prompt_text: torch.Tensor,
-            prompt_text_len: torch.Tensor,
-            prompt_speech_token: torch.Tensor,
-            prompt_speech_token_len: torch.Tensor,
-            embedding: torch.Tensor,
-            sampling: int = 25,
-            max_token_text_ratio: float = 20,
-            min_token_text_ratio: float = 2,
-    ) -> Generator[torch.Tensor, None, None]:
-        if self.fp16 is True:
-            embedding = embedding.half()
-
-        device = text.device
-        text = torch.concat([prompt_text, text], dim=1)
-        text_len += prompt_text_len
-        text = self.text_embedding(text)
-
-        # 1. encode text
-        text, text_len = self.encode(text, text_len)
-
-        # 2. encode embedding
-        if embedding.shape[0] != 0:
-            embedding = F.normalize(embedding, dim=1)
-            embedding = self.spk_embed_affine_layer(embedding)
-            embedding = embedding.unsqueeze(dim=1)
-        else:
-            embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype)
-
-        # 3. concat llm_input
-        sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
-        task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
-        if prompt_speech_token_len != 0:
-            prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
-        else:
-            prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
-        lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
-
-        # 4. cal min/max_length
-        min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
-        max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
-
-        # 5. step by step decode
-        out_tokens = []
-        offset = 0
-        att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
-        for i in range(max_len):
-            y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=offset, required_cache_size=-1,
-                                                                  att_cache=att_cache, cnn_cache=cnn_cache,
-                                                                  att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
-                                                                                                 device=lm_input.device)).to(torch.bool))
-            logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
-            # force continue decode first token
-            if i == 0:
-                logp[:, self.speech_token_size] = -float('inf')
-            top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
-            if top_ids == self.speech_token_size:
-                break
-            # in stream mode, yield token one by one
-            yield top_ids
-            out_tokens.append(top_ids)
-            offset += lm_input.size(1)
-            lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
-
-
-class Qwen2Encoder(torch.nn.Module):
-    def __init__(self, pretrain_path):
-        super().__init__()
-        self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
-
-    def forward_one_step(self, xs, masks, cache=None):
-        input_masks = masks[:, -1, :]
-        outs = self.model(
-            inputs_embeds=xs,
-            attention_mask=input_masks,
-            output_hidden_states=True,
-            return_dict=True,
-            use_cache=True,
-            past_key_values=cache,
-        )
-        xs = outs.hidden_states[-1]
-        new_cache = outs.past_key_values
-        return xs, new_cache
-
-
-class Qwen2LM(TransformerLM):
-    def __init__(
-            self,
-            llm_input_size: int,
-            llm_output_size: int,
-            speech_token_size: int,
-            llm: torch.nn.Module,
-            sampling: Callable,
-            length_normalized_loss: bool = True,
-            lsm_weight: float = 0.0,
-            mix_ratio: List[int] = [5, 15],
-            dpo: bool = False,
-    ):
-        torch.nn.Module.__init__(self)
-        self.llm_input_size = llm_input_size
-        self.llm_output_size = llm_output_size
-        self.speech_token_size = speech_token_size
-
-        # 2. build speech token language model related modules
-        self.sos_eos = 0
-        self.task_id = 1
-        self.fill_token = 2
-
-        self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
-        self.llm = llm
-        self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3)
-        self.criterion_ce = LabelSmoothingLoss(
-            size=speech_token_size + 3,
-            padding_idx=IGNORE_ID,
-            smoothing=lsm_weight,
-            normalize_length=length_normalized_loss,
-        )
-
-        # 3. [Optional] build speech token related modules
-        self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size)
-
-        # 4. sampling method
-        self.sampling = sampling
-        self.mix_ratio = mix_ratio
-
-        # 5. [Optional] set dpo
-        self.dpo = dpo
-
-
-    def forward(
-            self,
-            batch: dict,
-            device: torch.device,
-        ) -> Dict[str, Optional[torch.Tensor]]:
-        text_token = batch['text_token'].to(device)
-        text_token_len = batch['text_token_len'].to(device)
-        speech_token = batch['speech_token'].to(device)
-        speech_token_len = batch['speech_token_len'].to(device)
-        if self.dpo:
-            reject_speech_token = batch['reject_speech_token'].to(device)
-            reject_speech_token_len = batch['reject_speech_token_len'].to(device)
-        # 1. prepare llm_target
-        sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
-        task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
-        target_ids = [torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
-                                        [self.speech_token_size]) for i in range(text_token.size(0))]
-        if self.dpo:
-            reject_target_ids = [torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + reject_speech_token[i, :reject_speech_token_len[i]].tolist() +
-                                            [self.speech_token_size]) for i in range(text_token.size(0))]
-            target_ids.extend(reject_target_ids)
-        target_ids = pad_sequence(target_ids, batch_first=True, padding_value=IGNORE_ID).to(device)
-
-        # 2. speech token projection
-        speech_emb = self.speech_embedding(speech_token)
-        if self.dpo:
-            reject_speech_emb = self.speech_embedding(reject_speech_token)
-
-        # 3. text token projection
-        text_token_lst = unpad_sequence(text_token, text_token_len, batch_first=True)
-        text_emb = [self.llm.model.model.embed_tokens(y) for y in text_token_lst]
-
-        # 4. prepare llm_input
-        speech_emb = unpad_sequence(speech_emb, speech_token_len.cpu(), batch_first=True)
-        input_emb = [torch.concat([sos_eos_emb.squeeze(dim=0), text_emb[i], task_id_emb.squeeze(dim=0), speech_emb[i]], dim=0)
-                     for i in range(len(text_emb))]
-        if self.dpo:
-            reject_speech_emb = unpad_sequence(reject_speech_emb, reject_speech_token_len.cpu(), batch_first=True)
-            reject_input_emb = [torch.concat([sos_eos_emb.squeeze(dim=0), text_emb[i], task_id_emb.squeeze(dim=0), reject_speech_emb[i]], dim=0)
-                                for i in range(len(text_emb))]
-            input_emb.extend(reject_input_emb)
-        input_emb_lengths = torch.tensor([i.size(0) for i in input_emb], dtype=torch.int32).to(device)
-        input_emb = pad_sequence(input_emb, batch_first=True, padding_value=IGNORE_ID).to(device)
-
-        attention_mask = ~make_pad_mask(input_emb_lengths)
-
-        result = self.llm.model(
-            inputs_embeds=input_emb,
-            attention_mask=attention_mask,
-            return_dict=True
-        )
-        hidden_states = result.hidden_states
-        logits = self.llm_decoder(hidden_states[-1])
-        loss = self.criterion_ce(logits[: speech_token.shape[0]], target_ids[: speech_token.shape[0]])
-        acc = th_accuracy(
-            logits[: speech_token.shape[0]].view(-1, self.speech_token_size + 3),
-            target_ids[: speech_token.shape[0]],
-            ignore_label=IGNORE_ID,
-        )
-        if not self.dpo:
-            return {
-                "loss": loss,
-                "acc": acc,
-            }
-        else:
-            all_logps_sum, all_logps_mean = self.get_batch_logps(
-                logits, target_ids, attention_mask, text_token_len, average_log_prob=False, ignore_id=IGNORE_ID
-            )
-            chosen_logps = all_logps_sum[: speech_token.shape[0]]
-            rejected_logps = all_logps_sum[speech_token.shape[0]:]
-            return {
-                "loss": loss,
-                "acc": acc,
-                "chosen_logps": chosen_logps,
-                "rejected_logps": rejected_logps
-            }
-
-
-    def get_batch_logps(
-        self,
-        logits: torch.FloatTensor,
-        labels: torch.LongTensor,
-        attention_mask,
-        prompt_token_lens,
-        average_log_prob: bool = False,
-        ignore_id: int = -1,
-    ) -> torch.FloatTensor:
-        """Compute the log probabilities of the given labels under the given logits.
-
-        Args:
-            logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, vocab_size)
-            labels: Labels for which to compute the log probabilities. Label tokens with a value of -100 are ignored. Shape: (batch_size, sequence_length)
-            average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens.
-
-        Returns:
-            A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits.
-        """
-        assert average_log_prob == False
-        assert logits.shape[:-1] == labels.shape
-        labels = labels[:, 1:].clone()
-        logits = logits[:, :-1, :]
-        loss_masks = attention_mask.clone().bool()
-        # mask prompts
-        for mask, text_token_len in zip(loss_masks, prompt_token_lens):
-            mask[:text_token_len + 1] = False
-        loss_masks = loss_masks[:, 1:]
-        labels[loss_masks == False] = 0
-        # dummy token; we'll ignore the losses on these tokens later
-        ignore = labels == ignore_id
-        labels = labels.masked_fill(ignore, 0)  # avoid -1 index
-        per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2)   # (bs, time,)
-        logprobs_sums = (per_token_logps * loss_masks).sum(-1)
-        logprobs_means = (per_token_logps * loss_masks).sum(-1) / loss_masks.sum(-1)
-        return logprobs_sums, logprobs_means
-
-
-    @torch.inference_mode()
-    def inference(
-            self,
-            text: torch.Tensor,
-            text_len: torch.Tensor,
-            prompt_text: torch.Tensor,
-            prompt_text_len: torch.Tensor,
-            prompt_speech_token: torch.Tensor,
-            prompt_speech_token_len: torch.Tensor,
-            embedding: torch.Tensor,
-            sampling: int = 25,
-            max_token_text_ratio: float = 20,
-            min_token_text_ratio: float = 2,
-    ) -> Generator[torch.Tensor, None, None]:
-        device = text.device
-        text = torch.concat([prompt_text, text], dim=1)
-        text_len += prompt_text_len
-        text = self.llm.model.model.embed_tokens(text)
-
-        # 3. concat llm_input
-        sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
-        task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
-        if prompt_speech_token_len != 0:
-            prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
-        else:
-            prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
-        lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
-
-        # 4. cal min/max_length
-        min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
-        max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
-
-        # 5. step by step decode
-        out_tokens = []
-        cache = None
-        for i in range(max_len):
-            y_pred, cache = self.llm.forward_one_step(lm_input,
-                                                      masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
-                                                      cache=cache)
-            logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
-            top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
-            if top_ids == self.speech_token_size:
-                break
-            if top_ids > self.speech_token_size:
-                continue
-            # in stream mode, yield token one by one
-            yield top_ids
-            out_tokens.append(top_ids)
-            lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
-
-    @torch.inference_mode()
-    def inference_bistream(
-            self,
-            text: Generator,
-            prompt_text: torch.Tensor,
-            prompt_text_len: torch.Tensor,
-            prompt_speech_token: torch.Tensor,
-            prompt_speech_token_len: torch.Tensor,
-            embedding: torch.Tensor,
-            sampling: int = 25,
-            max_token_text_ratio: float = 20,
-            min_token_text_ratio: float = 2,
-    ) -> Generator[torch.Tensor, None, None]:
-
-        device = prompt_text.device
-        # 1. prepare input
-        sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
-        task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
-        if prompt_speech_token_len != 0:
-            prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
-        else:
-            prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
-        lm_input = torch.concat([sos_eos_emb], dim=1)
-
-        # 2. iterate text
-        out_tokens = []
-        cache = None
-        # NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
-        text_cache = self.llm.model.model.embed_tokens(prompt_text)
-        next_fill_index = -1
-        for this_text in text:
-            text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
-            # prompt_speech_token_emb not empty, try append to lm_input
-            while prompt_speech_token_emb.size(1) != 0:
-                if text_cache.size(1) >= self.mix_ratio[0]:
-                    lm_input_text, lm_input_speech = text_cache[:, :self.mix_ratio[0]], prompt_speech_token_emb[:, :self.mix_ratio[1]]
-                    logging.info('append {} text token {} speech token'.format(lm_input_text.size(1), lm_input_speech.size(1)))
-                    lm_input = torch.concat([lm_input, lm_input_text, lm_input_speech], dim=1)
-                    text_cache, prompt_speech_token_emb = text_cache[:, self.mix_ratio[0]:], prompt_speech_token_emb[:, self.mix_ratio[1]:]
-                else:
-                    logging.info('not enough text token to decode, wait for more')
-                    break
-            # no prompt_speech_token_emb remain, can decode some speech token
-            if prompt_speech_token_emb.size(1) == 0:
-                if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
-                    logging.info('get fill token, need to append more text token')
-                    if text_cache.size(1) >= self.mix_ratio[0]:
-                        lm_input_text = text_cache[:, :self.mix_ratio[0]]
-                        logging.info('append {} text token'.format(lm_input_text.size(1)))
-                        if len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2:
-                            lm_input = lm_input_text
-                        else:
-                            lm_input = torch.concat([lm_input, lm_input_text], dim=1)
-                        text_cache = text_cache[:, self.mix_ratio[0]:]
-                    else:
-                        logging.info('not enough text token to decode, wait for more')
-                        continue
-                while True:
-                    seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
-                    y_pred, cache = self.llm.forward_one_step(lm_input,
-                                                masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
-                                                cache=cache)
-                    logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
-                    if next_fill_index != -1 and len(out_tokens) == next_fill_index:
-                        top_ids = self.speech_token_size + 2
-                        next_fill_index += (self.mix_ratio[1] + 1)
-                    else:
-                        top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True).item()
-                    if top_ids == self.speech_token_size + 2:
-                        next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
-                        logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
-                    out_tokens.append(top_ids)
-                    if top_ids >= self.speech_token_size:
-                        if top_ids == self.speech_token_size + 2:
-                            break
-                        else:
-                            raise ValueError('should not get token {}'.format(top_ids))
-                    yield top_ids
-                    lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
-
-        # 3. final decode
-        lm_input = torch.concat([lm_input, text_cache, task_id_emb], dim=1)
-        logging.info('no more text token, decode until met eos')
-        while True:
-            seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
-            y_pred, cache = self.llm.forward_one_step(lm_input,
-                                                      masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
-                                                      cache=cache)
-            logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
-            top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False).item()
-            out_tokens.append(top_ids)
-            if top_ids >= self.speech_token_size:
-                if top_ids == self.speech_token_size:
-                    break
-                else:
-                    raise ValueError('should not get token {}'.format(top_ids))
-            # in stream mode, yield token one by one
-            yield top_ids
-            lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)

+ 7 - 3
cosyvoice/utils/executor.py

@@ -25,14 +25,16 @@ from cosyvoice.utils.train_utils import update_parameter_and_lr, log_per_step, l
 
 class Executor:
 
-    def __init__(self, gan: bool = False):
+    def __init__(self, gan: bool = False, ref_model: torch.nn.Module = None, dpo_loss: torch.nn.Module = None):
         self.gan = gan
+        self.ref_model = ref_model
+        self.dpo_loss = dpo_loss
         self.step = 0
         self.epoch = 0
         self.rank = int(os.environ.get('RANK', 0))
         self.device = torch.device('cuda:{}'.format(self.rank))
 
-    def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join):
+    def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=None):
         ''' Train one epoch
         '''
 
@@ -44,6 +46,8 @@ class Executor:
         # torch.nn.parallel.DistributedDataParallel to be able to train
         # with uneven inputs across participating processes.
         model.train()
+        if self.ref_model is not None:
+            self.ref_model.eval()
         model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
         with model_context():
             for batch_idx, batch_dict in enumerate(train_data_loader):
@@ -65,7 +69,7 @@ class Executor:
                     context = nullcontext
 
                 with context():
-                    info_dict = batch_forward(model, batch_dict, scaler, info_dict)
+                    info_dict = batch_forward(model, batch_dict, scaler, info_dict, ref_model=self.ref_model, dpo_loss=self.dpo_loss)
                     info_dict = batch_backward(model, scaler, info_dict)
 
                 info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)

+ 0 - 184
cosyvoice/utils/executor_dpo.py

@@ -1,184 +0,0 @@
-# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
-#               2024 Alibaba Inc (authors: Xiang Lyu)
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#   http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import logging
-from contextlib import nullcontext
-import os
-
-import torch
-import torch.distributed as dist
-
-from cosyvoice.utils.train_utils_dpo import update_parameter_and_lr, log_per_step, log_per_save, batch_forward, batch_backward, save_model, cosyvoice_join
-from cosyvoice.utils.losses_dpo import DPOLoss
-
-
-class Executor:
-
-    def __init__(self, gan: bool = False, dpo: bool = False, beta: float = 0.01, label_smoothing: float = 0.0, ipo: bool = False):
-        self.gan = gan
-        self.step = 0
-        self.epoch = 0
-        self.rank = int(os.environ.get('RANK', 0))
-        self.device = torch.device('cuda:{}'.format(self.rank))
-        self.dpo = dpo
-        if self.dpo:
-            self.dpo_loss = DPOLoss(beta, label_smoothing, ipo)
-        else:
-            self.dpo_loss = None
-
-    def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=None):
-        ''' Train one epoch
-        '''
-
-        lr = optimizer.param_groups[0]['lr']
-        logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
-        logging.info('using accumulate grad, new batch size is {} times'
-                     ' larger than before'.format(info_dict['accum_grad']))
-        # A context manager to be used in conjunction with an instance of
-        # torch.nn.parallel.DistributedDataParallel to be able to train
-        # with uneven inputs across participating processes.
-        model.train()
-        if self.dpo:
-            assert ref_model is not None
-            ref_model.eval()
-        model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
-        with model_context():
-            for batch_idx, batch_dict in enumerate(train_data_loader):
-                info_dict["tag"] = "TRAIN"
-                info_dict["step"] = self.step
-                info_dict["epoch"] = self.epoch
-                info_dict["batch_idx"] = batch_idx
-                if cosyvoice_join(group_join, info_dict):
-                    break
-
-                # Disable gradient synchronizations across DDP processes.
-                # Within this context, gradients will be accumulated on module
-                # variables, which will later be synchronized.
-                if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
-                    context = model.no_sync
-                # Used for single gpu training and DDP gradient synchronization
-                # processes.
-                else:
-                    context = nullcontext
-
-                with context():
-                    info_dict = batch_forward(model, batch_dict, scaler, info_dict, ref_model, self.dpo_loss)
-                    info_dict = batch_backward(model, scaler, info_dict)
-
-                info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
-                log_per_step(writer, info_dict)
-                # NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
-                if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
-                   (batch_idx + 1) % info_dict["accum_grad"] == 0:
-                    dist.barrier()
-                    self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False, ref_model=ref_model, dpo_loss=self.dpo_loss)
-                    model.train()
-                if (batch_idx + 1) % info_dict["accum_grad"] == 0:
-                    self.step += 1
-        dist.barrier()
-        self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True, ref_model=ref_model, dpo_loss=self.dpo_loss)
-
-    def train_one_epoc_gan(self, model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
-                           writer, info_dict, scaler, group_join):
-        ''' Train one epoch
-        '''
-
-        lr = optimizer.param_groups[0]['lr']
-        logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
-        logging.info('using accumulate grad, new batch size is {} times'
-                     ' larger than before'.format(info_dict['accum_grad']))
-        # A context manager to be used in conjunction with an instance of
-        # torch.nn.parallel.DistributedDataParallel to be able to train
-        # with uneven inputs across participating processes.
-        model.train()
-        model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
-        with model_context():
-            for batch_idx, batch_dict in enumerate(train_data_loader):
-                info_dict["tag"] = "TRAIN"
-                info_dict["step"] = self.step
-                info_dict["epoch"] = self.epoch
-                info_dict["batch_idx"] = batch_idx
-                if cosyvoice_join(group_join, info_dict):
-                    break
-
-                # Disable gradient synchronizations across DDP processes.
-                # Within this context, gradients will be accumulated on module
-                # variables, which will later be synchronized.
-                if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
-                    context = model.no_sync
-                # Used for single gpu training and DDP gradient synchronization
-                # processes.
-                else:
-                    context = nullcontext
-
-                with context():
-                    batch_dict['turn'] = 'discriminator'
-                    info_dict = batch_forward(model, batch_dict, scaler, info_dict)
-                    info_dict = batch_backward(model, scaler, info_dict)
-                info_dict = update_parameter_and_lr(model, optimizer_d, scheduler_d, scaler, info_dict)
-                optimizer.zero_grad()
-                log_per_step(writer, info_dict)
-                with context():
-                    batch_dict['turn'] = 'generator'
-                    info_dict = batch_forward(model, batch_dict, scaler, info_dict)
-                    info_dict = batch_backward(model, scaler, info_dict)
-                info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
-                optimizer_d.zero_grad()
-                log_per_step(writer, info_dict)
-                # NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
-                if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
-                   (batch_idx + 1) % info_dict["accum_grad"] == 0:
-                    dist.barrier()
-                    self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
-                    model.train()
-                if (batch_idx + 1) % info_dict["accum_grad"] == 0:
-                    self.step += 1
-        dist.barrier()
-        self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
-
-    @torch.inference_mode()
-    def cv(self, model, cv_data_loader, writer, info_dict, on_batch_end=True, ref_model=None, dpo_loss=None):
-        ''' Cross validation on
-        '''
-        logging.info('Epoch {} Step {} on_batch_end {} CV rank {}'.format(self.epoch, self.step + 1, on_batch_end, self.rank))
-        model.eval()
-        if self.dpo:
-            assert ref_model is not None
-            ref_model.eval()
-        total_num_utts, total_loss_dict = 0, {}  # avoid division by 0
-        for batch_idx, batch_dict in enumerate(cv_data_loader):
-            info_dict["tag"] = "CV"
-            info_dict["step"] = self.step
-            info_dict["epoch"] = self.epoch
-            info_dict["batch_idx"] = batch_idx
-
-            num_utts = len(batch_dict["utts"])
-            total_num_utts += num_utts
-
-            if self.gan is True:
-                batch_dict['turn'] = 'generator'
-            info_dict = batch_forward(model, batch_dict, None, info_dict, ref_model, dpo_loss)
-
-            for k, v in info_dict['loss_dict'].items():
-                if k not in total_loss_dict:
-                    total_loss_dict[k] = []
-                total_loss_dict[k].append(v.item() * num_utts)
-            log_per_step(None, info_dict)
-        for k, v in total_loss_dict.items():
-            total_loss_dict[k] = sum(v) / total_num_utts
-        info_dict['loss_dict'] = total_loss_dict
-        log_per_save(writer, info_dict)
-        model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1)
-        save_model(model, model_name, info_dict)

+ 37 - 0
cosyvoice/utils/losses.py

@@ -1,5 +1,6 @@
 import torch
 import torch.nn.functional as F
+from typing import Tuple
 
 
 def tpr_loss(disc_real_outputs, disc_generated_outputs, tau):
@@ -18,3 +19,39 @@ def mel_loss(real_speech, generated_speech, mel_transforms):
         mel_g = transform(generated_speech)
         loss += F.l1_loss(mel_g, mel_r)
     return loss
+
+
+class DPOLoss(torch.nn.Module):
+    """
+    DPO Loss
+    """
+
+    def __init__(self, beta: float, label_smoothing: float = 0.0, ipo: bool = False) -> None:
+        super().__init__()
+        self.beta = beta
+        self.label_smoothing = label_smoothing
+        self.ipo = ipo
+
+    def forward(
+        self,
+        policy_chosen_logps: torch.Tensor,
+        policy_rejected_logps: torch.Tensor,
+        reference_chosen_logps: torch.Tensor,
+        reference_rejected_logps: torch.Tensor,
+    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+        pi_logratios = policy_chosen_logps - policy_rejected_logps
+        ref_logratios = reference_chosen_logps - reference_rejected_logps
+        logits = pi_logratios - ref_logratios
+        if self.ipo:
+            losses = (logits - 1 / (2 * self.beta)) ** 2  # Eq. 17 of https://arxiv.org/pdf/2310.12036v2.pdf
+        else:
+            # Eq. 3 https://ericmitchell.ai/cdpo.pdf; label_smoothing=0 gives original DPO (Eq. 7 of https://arxiv.org/pdf/2305.18290.pdf)
+            losses = (
+                -F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)
+                - F.logsigmoid(-self.beta * logits) * self.label_smoothing
+            )
+        loss = losses.mean()
+        chosen_rewards = self.beta * (policy_chosen_logps - reference_chosen_logps).detach()
+        rejected_rewards = self.beta * (policy_rejected_logps - reference_rejected_logps).detach()
+
+        return loss, chosen_rewards, rejected_rewards

+ 0 - 57
cosyvoice/utils/losses_dpo.py

@@ -1,57 +0,0 @@
-import torch
-import torch.nn.functional as F
-from typing import Tuple
-
-
-def tpr_loss(disc_real_outputs, disc_generated_outputs, tau):
-    loss = 0
-    for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
-        m_DG = torch.median((dr - dg))
-        L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG])
-        loss += tau - F.relu(tau - L_rel)
-    return loss
-
-
-def mel_loss(real_speech, generated_speech, mel_transforms):
-    loss = 0
-    for transform in mel_transforms:
-        mel_r = transform(real_speech)
-        mel_g = transform(generated_speech)
-        loss += F.l1_loss(mel_g, mel_r)
-    return loss
-
-
-class DPOLoss(torch.nn.Module):
-    """
-    DPO Loss
-    """
-
-    def __init__(self, beta: float, label_smoothing: float = 0.0, ipo: bool = False) -> None:
-        super().__init__()
-        self.beta = beta
-        self.label_smoothing = label_smoothing
-        self.ipo = ipo
-
-    def forward(
-        self,
-        policy_chosen_logps: torch.Tensor,
-        policy_rejected_logps: torch.Tensor,
-        reference_chosen_logps: torch.Tensor,
-        reference_rejected_logps: torch.Tensor,
-    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
-        pi_logratios = policy_chosen_logps - policy_rejected_logps
-        ref_logratios = reference_chosen_logps - reference_rejected_logps
-        logits = pi_logratios - ref_logratios
-        if self.ipo:
-            losses = (logits - 1 / (2 * self.beta)) ** 2  # Eq. 17 of https://arxiv.org/pdf/2310.12036v2.pdf
-        else:
-            # Eq. 3 https://ericmitchell.ai/cdpo.pdf; label_smoothing=0 gives original DPO (Eq. 7 of https://arxiv.org/pdf/2305.18290.pdf)
-            losses = (
-                -F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)
-                - F.logsigmoid(-self.beta * logits) * self.label_smoothing
-            )
-        loss = losses.mean()
-        chosen_rewards = self.beta * (policy_chosen_logps - reference_chosen_logps).detach()
-        rejected_rewards = self.beta * (policy_rejected_logps - reference_rejected_logps).detach()
-
-        return loss, chosen_rewards, rejected_rewards

+ 22 - 4
cosyvoice/utils/train_utils.py

@@ -50,10 +50,10 @@ def init_distributed(args):
     return world_size, local_rank, rank
 
 
-def init_dataset_and_dataloader(args, configs, gan):
+def init_dataset_and_dataloader(args, configs, gan, dpo):
     data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline']
-    train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=True, partition=True)
-    cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=False, partition=False)
+    train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, dpo=dpo, shuffle=True, partition=True)
+    cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, dpo=dpo, shuffle=False, partition=False)
 
     # do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
     train_data_loader = DataLoader(train_dataset,
@@ -235,7 +235,7 @@ def cosyvoice_join(group_join, info_dict):
         return False
 
 
-def batch_forward(model, batch, scaler, info_dict):
+def batch_forward(model, batch, scaler, info_dict, ref_model=None, dpo_loss=None):
     device = int(os.environ.get('LOCAL_RANK', 0))
 
     dtype = info_dict["dtype"]
@@ -253,6 +253,24 @@ def batch_forward(model, batch, scaler, info_dict):
 
     with autocast:
         info_dict['loss_dict'] = model(batch, device)
+        if ref_model is not None and dpo_loss is not None:
+            chosen_logps = info_dict['loss_dict']["chosen_logps"]
+            rejected_logps = info_dict['loss_dict']["rejected_logps"]
+            sft_loss = info_dict['loss_dict']['loss']
+            with torch.no_grad():
+                ref_loss_dict = ref_model(batch, device)
+            reference_chosen_logps = ref_loss_dict["chosen_logps"]
+            reference_rejected_logps = ref_loss_dict["rejected_logps"]
+            preference_loss, chosen_reward, reject_reward = dpo_loss(
+                chosen_logps, rejected_logps, reference_chosen_logps, reference_rejected_logps
+            )
+            dpo_acc = (chosen_reward > reject_reward).float().mean()
+            info_dict['loss_dict']["loss"] = preference_loss + sft_loss
+            info_dict['loss_dict']["sft_loss"] = sft_loss
+            info_dict['loss_dict']["dpo_loss"] = preference_loss
+            info_dict['loss_dict']["dpo_acc"] = dpo_acc
+            info_dict['loss_dict']["chosen_reward"] = chosen_reward.mean()
+            info_dict['loss_dict']["reject_reward"] = reject_reward.mean()
     return info_dict
 
 

+ 0 - 364
cosyvoice/utils/train_utils_dpo.py

@@ -1,364 +0,0 @@
-# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
-#               2023 Horizon Inc. (authors: Xingchen Song)
-#               2024 Alibaba Inc (authors: Xiang Lyu)
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-import logging
-import os
-import torch
-import json
-import re
-import datetime
-import yaml
-
-import deepspeed
-import torch.optim as optim
-import torch.distributed as dist
-
-from torch.utils.tensorboard import SummaryWriter
-from torch.utils.data import DataLoader
-from torch.nn.utils import clip_grad_norm_
-
-from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live
-
-from cosyvoice.dataset.dataset import Dataset
-from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing, ConstantLR
-
-
-def init_distributed(args):
-    world_size = int(os.environ.get('WORLD_SIZE', 1))
-    local_rank = int(os.environ.get('LOCAL_RANK', 0))
-    rank = int(os.environ.get('RANK', 0))
-    logging.info('training on multiple gpus, this gpu {}'.format(local_rank) +
-                 ', rank {}, world_size {}'.format(rank, world_size))
-    if args.train_engine == 'torch_ddp':
-        torch.cuda.set_device(local_rank)
-        dist.init_process_group(args.dist_backend)
-    else:
-        deepspeed.init_distributed(dist_backend=args.dist_backend)
-    return world_size, local_rank, rank
-
-
-def init_dataset_and_dataloader(args, configs, gan):
-    data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline']
-    train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=True, partition=True)
-    cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=False, partition=False)
-
-    # do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
-    train_data_loader = DataLoader(train_dataset,
-                                   batch_size=None,
-                                   pin_memory=args.pin_memory,
-                                   num_workers=args.num_workers,
-                                   prefetch_factor=args.prefetch)
-    cv_data_loader = DataLoader(cv_dataset,
-                                batch_size=None,
-                                pin_memory=args.pin_memory,
-                                num_workers=args.num_workers,
-                                prefetch_factor=args.prefetch)
-    return train_dataset, cv_dataset, train_data_loader, cv_data_loader
-
-
-def check_modify_and_save_config(args, configs):
-    if args.train_engine == "torch_ddp":
-        configs['train_conf']["dtype"] = 'fp32'
-    else:
-        with open(args.deepspeed_config, 'r') as fin:
-            ds_configs = json.load(fin)
-        if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]:
-            configs['train_conf']["dtype"] = "fp16"
-        elif "bf16" in ds_configs and ds_configs["bf16"]["enabled"]:
-            configs['train_conf']["dtype"] = "bf16"
-        else:
-            configs['train_conf']["dtype"] = "fp32"
-        assert ds_configs["train_micro_batch_size_per_gpu"] == 1
-        # if use deepspeed, override ddp config
-        configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] *
-                                                     configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"])
-        configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"]
-        configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"]
-        configs['train_conf']['log_interval'] = ds_configs["steps_per_print"]
-    return configs
-
-
-def wrap_cuda_model(args, model):
-    local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1))
-    world_size = int(os.environ.get('WORLD_SIZE', 1))
-    if args.train_engine == "torch_ddp":  # native pytorch ddp
-        assert (torch.cuda.is_available())
-        model.cuda()
-        model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
-    else:
-        if int(os.environ.get('RANK', 0)) == 0:
-            logging.info("Estimating model states memory needs (zero2)...")
-            estimate_zero2_model_states_mem_needs_all_live(
-                model,
-                num_gpus_per_node=local_world_size,
-                num_nodes=world_size // local_world_size)
-    return model
-
-
-def init_optimizer_and_scheduler(args, configs, model, gan):
-    if gan is False:
-        if configs['train_conf']['optim'] == 'adam':
-            optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
-        elif configs['train_conf']['optim'] == 'adamw':
-            optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
-        else:
-            raise ValueError("unknown optimizer: " + configs['train_conf'])
-
-        if configs['train_conf']['scheduler'] == 'warmuplr':
-            scheduler_type = WarmupLR
-            scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
-        elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
-            scheduler_type = NoamHoldAnnealing
-            scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
-        elif configs['train_conf']['scheduler'] == 'constantlr':
-            scheduler_type = ConstantLR
-            scheduler = ConstantLR(optimizer)
-        else:
-            raise ValueError("unknown scheduler: " + configs['train_conf'])
-
-        # use deepspeed optimizer for speedup
-        if args.train_engine == "deepspeed":
-            def scheduler(opt):
-                return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
-            model, optimizer, _, scheduler = deepspeed.initialize(
-                args=args,
-                model=model,
-                optimizer=None,
-                lr_scheduler=scheduler,
-                model_parameters=model.parameters())
-
-        optimizer_d, scheduler_d = None, None
-
-    else:
-        # currently we wrap generator and discriminator in one model, so we cannot use deepspeed
-        if configs['train_conf']['optim'] == 'adam':
-            optimizer = optim.Adam(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
-        elif configs['train_conf']['optim'] == 'adamw':
-            optimizer = optim.AdamW(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
-        else:
-            raise ValueError("unknown optimizer: " + configs['train_conf'])
-
-        if configs['train_conf']['scheduler'] == 'warmuplr':
-            scheduler_type = WarmupLR
-            scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
-        elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
-            scheduler_type = NoamHoldAnnealing
-            scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
-        elif configs['train_conf']['scheduler'] == 'constantlr':
-            scheduler_type = ConstantLR
-            scheduler = ConstantLR(optimizer)
-        else:
-            raise ValueError("unknown scheduler: " + configs['train_conf'])
-
-        if configs['train_conf']['optim_d'] == 'adam':
-            optimizer_d = optim.Adam(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
-        elif configs['train_conf']['optim_d'] == 'adamw':
-            optimizer_d = optim.AdamW(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
-        else:
-            raise ValueError("unknown optimizer: " + configs['train_conf'])
-
-        if configs['train_conf']['scheduler_d'] == 'warmuplr':
-            scheduler_type = WarmupLR
-            scheduler_d = WarmupLR(optimizer_d, **configs['train_conf']['scheduler_conf'])
-        elif configs['train_conf']['scheduler_d'] == 'NoamHoldAnnealing':
-            scheduler_type = NoamHoldAnnealing
-            scheduler_d = NoamHoldAnnealing(optimizer_d, **configs['train_conf']['scheduler_conf'])
-        elif configs['train_conf']['scheduler'] == 'constantlr':
-            scheduler_type = ConstantLR
-            scheduler_d = ConstantLR(optimizer_d)
-        else:
-            raise ValueError("unknown scheduler: " + configs['train_conf'])
-    return model, optimizer, scheduler, optimizer_d, scheduler_d
-
-
-def init_summarywriter(args):
-    writer = None
-    if int(os.environ.get('RANK', 0)) == 0:
-        os.makedirs(args.model_dir, exist_ok=True)
-        writer = SummaryWriter(args.tensorboard_dir)
-    return writer
-
-
-def save_model(model, model_name, info_dict):
-    rank = int(os.environ.get('RANK', 0))
-    model_dir = info_dict["model_dir"]
-    save_model_path = os.path.join(model_dir, '{}.pt'.format(model_name))
-
-    if info_dict["train_engine"] == "torch_ddp":
-        if rank == 0:
-            torch.save({**model.module.state_dict(), 'epoch': info_dict['epoch'], 'step': info_dict['step']}, save_model_path)
-    else:
-        with torch.no_grad():
-            model.save_checkpoint(save_dir=model_dir,
-                                  tag=model_name,
-                                  client_state=info_dict)
-    if rank == 0:
-        info_path = re.sub('.pt$', '.yaml', save_model_path)
-        info_dict['save_time'] = datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S')
-        with open(info_path, 'w') as fout:
-            data = yaml.dump(info_dict)
-            fout.write(data)
-        logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format(rank, save_model_path))
-
-
-def cosyvoice_join(group_join, info_dict):
-    world_size = int(os.environ.get('WORLD_SIZE', 1))
-    local_rank = int(os.environ.get('LOCAL_RANK', 0))
-    rank = int(os.environ.get('RANK', 0))
-
-    if info_dict["batch_idx"] != 0:
-        # we try to join all rank in both ddp and deepspeed mode, in case different rank has different lr
-        try:
-            dist.monitored_barrier(group=group_join,
-                                   timeout=group_join.options._timeout)
-            return False
-        except RuntimeError as e:
-            logging.info("Detected uneven workload distribution: {}\n".format(e) +
-                         "Break current worker to manually join all workers, " +
-                         "world_size {}, current rank {}, current local_rank {}\n".
-                         format(world_size, rank, local_rank))
-            return True
-    else:
-        return False
-
-
-def batch_forward(model, batch, scaler, info_dict, ref_model=None, dpo_loss=None):
-    device = int(os.environ.get('LOCAL_RANK', 0))
-
-    dtype = info_dict["dtype"]
-    if dtype == "fp16":
-        dtype = torch.float16
-    elif dtype == "bf16":
-        dtype = torch.bfloat16
-    else:  # fp32
-        dtype = torch.float32
-
-    if info_dict['train_engine'] == 'torch_ddp':
-        autocast = torch.cuda.amp.autocast(enabled=scaler is not None)
-    else:
-        autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False)
-
-    with autocast:
-        info_dict['loss_dict'] = model(batch, device)
-        if ref_model and dpo_loss:
-            chosen_logps = info_dict['loss_dict']["chosen_logps"]
-            rejected_logps = info_dict['loss_dict']["rejected_logps"]
-            sft_loss = info_dict['loss_dict']['loss']
-            with torch.no_grad():
-                ref_model = ref_model.to(device)
-                ref_loss_dict = ref_model(batch, device)
-            reference_chosen_logps = ref_loss_dict["chosen_logps"]
-            reference_rejected_logps = ref_loss_dict["rejected_logps"]
-            preference_loss, chosen_reward, reject_reward = dpo_loss(
-                chosen_logps, rejected_logps, reference_chosen_logps, reference_rejected_logps
-            )
-            dpo_acc = (chosen_reward > reject_reward).float().mean()
-            info_dict['loss_dict']["loss"] = preference_loss + sft_loss
-            info_dict['loss_dict']["sft_loss"] = sft_loss
-            info_dict['loss_dict']["dpo_loss"] = preference_loss
-            info_dict['loss_dict']["dpo_acc"] = dpo_acc
-            info_dict['loss_dict']["chosen_reward"] = chosen_reward.mean()
-            info_dict['loss_dict']["reject_reward"] = reject_reward.mean()
-    return info_dict
-
-
-def batch_backward(model, scaler, info_dict):
-    if info_dict["train_engine"] == "deepspeed":
-        scaled_loss = model.backward(info_dict['loss_dict']['loss'])
-    else:
-        scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad']
-        if scaler is not None:
-            scaler.scale(scaled_loss).backward()
-        else:
-            scaled_loss.backward()
-
-    info_dict['loss_dict']['loss'] = scaled_loss
-    return info_dict
-
-
-def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict):
-    grad_norm = 0.0
-    if info_dict['train_engine'] == "deepspeed":
-        info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary()
-        model.step()
-        grad_norm = model.get_global_grad_norm()
-    elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0:
-        # Use mixed precision training
-        if scaler is not None:
-            scaler.unscale_(optimizer)
-            grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
-            # We don't check grad here since that if the gradient
-            # has inf/nan values, scaler.step will skip
-            # optimizer.step().
-            if torch.isfinite(grad_norm):
-                scaler.step(optimizer)
-            scaler.update()
-        else:
-            grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
-            if torch.isfinite(grad_norm):
-                optimizer.step()
-        optimizer.zero_grad()
-        scheduler.step()
-    info_dict["lr"] = optimizer.param_groups[0]['lr']
-    info_dict["grad_norm"] = grad_norm
-    return info_dict
-
-
-def log_per_step(writer, info_dict):
-    tag = info_dict["tag"]
-    epoch = info_dict.get('epoch', 0)
-    step = info_dict["step"]
-    batch_idx = info_dict["batch_idx"]
-    loss_dict = info_dict['loss_dict']
-    rank = int(os.environ.get('RANK', 0))
-
-    # only rank 0 write to tensorboard to avoid multi-process write
-    if writer is not None:
-        if (info_dict['train_engine'] == 'deepspeed' and info_dict['is_gradient_accumulation_boundary'] is True) or \
-           (info_dict['train_engine'] == 'torch_ddp' and (info_dict['batch_idx'] + 1) % info_dict['accum_grad'] == 0):
-            for k in ['epoch', 'lr', 'grad_norm']:
-                writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
-            for k, v in loss_dict.items():
-                writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
-
-    # TRAIN & CV, Shell log (stdout)
-    if (info_dict['batch_idx'] + 1) % info_dict['log_interval'] == 0:
-        log_str = '{} Batch {}/{} '.format(tag, epoch, batch_idx + 1)
-        for name, value in loss_dict.items():
-            log_str += '{} {:.6f} '.format(name, value)
-        if tag == "TRAIN":
-            log_str += 'lr {:.8f} grad_norm {:.6f}'.format(
-                info_dict["lr"], info_dict['grad_norm'])
-        log_str += ' rank {}'.format(rank)
-        logging.debug(log_str)
-
-
-def log_per_save(writer, info_dict):
-    tag = info_dict["tag"]
-    epoch = info_dict["epoch"]
-    step = info_dict["step"]
-    loss_dict = info_dict["loss_dict"]
-    lr = info_dict['lr']
-    rank = int(os.environ.get('RANK', 0))
-    logging.info(
-        'Epoch {} Step {} CV info lr {} {} rank {}'.format(
-            epoch, step + 1, lr, rank, ' '.join(['{}_{}'.format(k, v) for k, v in loss_dict.items()])))
-
-    if writer is not None:
-        for k in ['epoch', 'lr']:
-            writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
-        for k, v in loss_dict.items():
-            writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)

+ 2 - 0
examples/libritts/cosyvoice/local/prepare_data.py

@@ -49,5 +49,7 @@ if __name__ == "__main__":
                         type=str)
     parser.add_argument('--des_dir',
                         type=str)
+    parser.add_argument('--ref_model',
+                        type=str)
     args = parser.parse_args()
     main()

+ 49 - 0
examples/libritts/cosyvoice/local/prepare_reject_sample.py

@@ -0,0 +1,49 @@
+import argparse
+import logging
+import os
+from tqdm import tqdm
+import torch, torchaudio
+from cosyvoice.cli.cosyvoice import CosyVoice2
+from cosyvoice.utils.file_utils import load_wav
+
+
+logger = logging.getLogger()
+
+
+def main():
+    cosyvoice = CosyVoice2(args.ref_model)
+
+    utt2wav, utt2text = {}, {}
+    with open('{}/wav.scp'.format(args.src_dir)) as f:
+        for l in f:
+            l = l.split('\n')[0].split()
+            utt2wav[l[0]] = l[1]
+    with open('{}/text'.format(args.src_dir)) as f:
+        for l in f:
+            l = l.split('\n')[0].split()
+            utt2text[l[0]] = ' '.join(l[1:])
+
+    os.makedirs('{}/wav'.format(args.des_dir), exist_ok=True)
+    with open('{}/wav.scp'.format(args.des_dir), 'w') as f:
+        for utt, wav in tqdm(utt2wav.items()):
+            prompt_speech_16k = load_wav(wav, 16000)
+            if prompt_speech_16k.shape[1] >= 30 * 16000:
+                continue
+            speech_list = []
+            for i, j in enumerate(cosyvoice.inference_zero_shot(utt2text[utt], utt2text[utt], prompt_speech_16k, stream=False, text_frontend=False)):
+                speech_list.append(j['tts_speech'])
+            negative_wav = os.path.abspath('{}/wav/{}'.format(args.des_dir, os.path.basename(wav)))
+            torchaudio.save(negative_wav, torch.concat(speech_list, dim=1), cosyvoice.sample_rate, backend='soundfile')
+            f.write('{} {}\n'.format(utt, negative_wav))
+
+
+if __name__ == "__main__":
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--src_dir',
+                        type=str)
+    parser.add_argument('--des_dir',
+                        type=str)
+    parser.add_argument('--ref_model',
+                        type=str)
+    args = parser.parse_args()
+    main()

+ 0 - 17
examples/libritts/cosyvoice/run.sh

@@ -51,23 +51,6 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
   done
 fi
 
-# inference
-if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
-  echo "Run inference. Please make sure utt in tts_text is in prompt_data"
-  for mode in sft zero_shot; do
-    python cosyvoice/bin/inference.py --mode $mode \
-      --gpu 0 \
-      --config conf/cosyvoice.yaml \
-      --prompt_data data/test-clean/parquet/data.list \
-      --prompt_utt2data data/test-clean/parquet/utt2data.list \
-      --tts_text `pwd`/tts_text.json \
-      --llm_model $pretrained_model_dir/llm.pt \
-      --flow_model $pretrained_model_dir/flow.pt \
-      --hifigan_model $pretrained_model_dir/hift.pt \
-      --result_dir `pwd`/exp/cosyvoice/test-clean/$mode
-  done
-fi
-
 # train llm
 export CUDA_VISIBLE_DEVICES="0,1,2,3"
 num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')

+ 1 - 20
examples/libritts/cosyvoice2/run.sh

@@ -51,25 +51,6 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
   done
 fi
 
-# inference
-if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
-  echo "Run inference. Please make sure utt in tts_text is in prompt_data"
-  # TODO consider remove bin/inference.py, or use similar initilization method as in readme
-  for mode in sft zero_shot; do
-    python cosyvoice/bin/inference.py --mode $mode \
-      --gpu 0 \
-      --config conf/cosyvoice2.yaml \
-      --prompt_data data/test-clean/parquet/data.list \
-      --prompt_utt2data data/test-clean/parquet/utt2data.list \
-      --tts_text `pwd`/tts_text.json \
-      --qwen_pretrain_path $pretrained_model_dir/CosyVoice-BlankEN \
-      --llm_model $pretrained_model_dir/llm.pt \
-      --flow_model $pretrained_model_dir/flow.pt \
-      --hifigan_model $pretrained_model_dir/hift.pt \
-      --result_dir `pwd`/exp/cosyvoice/test-clean/$mode
-  done
-fi
-
 # train llm
 export CUDA_VISIBLE_DEVICES="0,1,2,3"
 num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
@@ -86,7 +67,7 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
   cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
   cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
   # NOTE will update llm/hift training later
-  for model in llm flow; do
+  for model in llm flow hifigan; do
     torchrun --nnodes=1 --nproc_per_node=$num_gpus \
         --rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:1234" \
       cosyvoice/bin/train.py \

+ 123 - 0
examples/libritts/cosyvoice2/run_dpo.sh

@@ -0,0 +1,123 @@
+#!/bin/bash
+# Copyright 2024 Alibaba Inc. All Rights Reserved.
+. ./path.sh || exit 1;
+
+stage=-1
+stop_stage=3
+
+data_url=www.openslr.org/resources/60
+data_dir=/mnt/lyuxiang.lx/data/tts/openslr/libritts
+pretrained_model_dir=../../../pretrained_models/CosyVoice2-0.5B
+
+if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
+  echo "Data Download"
+  for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
+    local/download_and_untar.sh ${data_dir} ${data_url} ${part}
+  done
+fi
+
+if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
+  echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
+  for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
+    mkdir -p data/$x
+    python local/prepare_data.py --src_dir $data_dir/LibriTTS/$x --des_dir data/$x
+  done
+fi
+
+if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
+  echo "Prepare negative samples using CosyVoice2-0.5B, this is also our reference model.
+    Here we use CosyVoice2-0.5B generated audio as reject sample for simplicity, you can use metric like wer/similarity."
+  for x in train-clean-100 train-clean-360 train-other-500; do
+    mkdir -p data/${x}_reject
+    python local/prepare_reject_sample.py --src_dir data/$x --des_dir data/${x}_reject --ref_model $pretrained_model_dir
+  done
+fi
+
+if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
+  echo "Extract campplus speaker embedding, you will get spk2embedding.pt and utt2embedding.pt in data/$x dir"
+  for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
+    tools/extract_embedding.py --dir data/$x \
+      --onnx_path $pretrained_model_dir/campplus.onnx
+  done
+fi
+
+if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
+  echo "Extract discrete speech token, you will get utt2speech_token.pt in data/$x dir"
+  for x in train-clean-100 train-clean-360 train-other-500 train-clean-100_reject train-clean-360_reject dev-clean dev-other test-clean test-other; do
+    tools/extract_speech_token.py --dir data/$x \
+      --onnx_path $pretrained_model_dir/speech_tokenizer_v2.onnx
+  done
+fi
+
+if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
+  echo "Prepare required parquet format data, you should have prepared wav.scp/text/utt2spk/spk2utt/utt2embedding.pt/spk2embedding.pt/utt2speech_token.pt"
+  for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
+    mkdir -p data/$x/parquet
+    tools/make_parquet_list.py --num_utts_per_parquet 1000 \
+      --num_processes 10 \
+      --dpo \
+      --src_dir data/$x \
+      --des_dir data/$x/parquet
+  done
+fi
+
+# train llm
+export CUDA_VISIBLE_DEVICES="0,1,2,3"
+num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
+job_id=1986
+dist_backend="nccl"
+num_workers=2
+prefetch=100
+train_engine=torch_ddp
+if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
+  echo "Run train. We only support llm traning for now. If your want to train from scratch, please use conf/cosyvoice.fromscratch.yaml"
+  if [ $train_engine == 'deepspeed' ]; then
+    echo "Notice deepspeed has its own optimizer config. Modify conf/ds_stage2.json if necessary"
+  fi
+  cat data/{train-clean-100,train-clean-360,train-other-500}/parquet/data.list > data/train.data.list
+  cat data/{dev-clean,dev-other}/parquet/data.list > data/dev.data.list
+  # NOTE only llm supports dpo
+  for model in llm; do
+    torchrun --nnodes=1 --nproc_per_node=$num_gpus \
+        --rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint="localhost:1234" \
+      cosyvoice/bin/train.py \
+      --train_engine $train_engine \
+      --config conf/cosyvoice2.yaml \
+      --train_data data/train.data.list \
+      --cv_data data/dev.data.list \
+      --qwen_pretrain_path $pretrained_model_dir/CosyVoice-BlankEN \
+      --model $model \
+      --checkpoint $pretrained_model_dir/$model.pt \
+      --ref_model $pretrained_model_dir/llm.pt \
+      --model_dir `pwd`/exp/cosyvoice2/$model/$train_engine \
+      --tensorboard_dir `pwd`/tensorboard/cosyvoice2/$model/$train_engine \
+      --ddp.dist_backend $dist_backend \
+      --num_workers ${num_workers} \
+      --prefetch ${prefetch} \
+      --pin_memory \
+      --use_amp \
+      --dpo \
+      --deepspeed_config ./conf/ds_stage2.json \
+      --deepspeed.save_states model+optimizer
+  done
+fi
+
+# average model
+average_num=5
+if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
+  for model in llm flow hifigan; do
+    decode_checkpoint=`pwd`/exp/cosyvoice/$model/$train_engine/${model}.pt
+    echo "do model average and final checkpoint is $decode_checkpoint"
+    python cosyvoice/bin/average_model.py \
+      --dst_model $decode_checkpoint \
+      --src_path `pwd`/exp/cosyvoice/$model/$train_engine  \
+      --num ${average_num} \
+      --val_best
+  done
+fi
+
+if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
+  echo "Export your model for inference speedup. Remember copy your llm or flow model to model_dir"
+  python cosyvoice/bin/export_jit.py --model_dir $pretrained_model_dir
+  python cosyvoice/bin/export_onnx.py --model_dir $pretrained_model_dir
+fi

+ 0 - 17
examples/magicdata-read/cosyvoice/run.sh

@@ -51,23 +51,6 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
   done
 fi
 
-# inference
-if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
-  echo "Run inference. Please make sure utt in tts_text is in prompt_data"
-  for mode in sft zero_shot; do
-    python cosyvoice/bin/inference.py --mode $mode \
-      --gpu 0 \
-      --config conf/cosyvoice.yaml \
-      --prompt_data data/test/parquet/data.list \
-      --prompt_utt2data data/test/parquet/utt2data.list \
-      --tts_text `pwd`/tts_text.json \
-      --llm_model $pretrained_model_dir/llm.pt \
-      --flow_model $pretrained_model_dir/flow.pt \
-      --hifigan_model $pretrained_model_dir/hift.pt \
-      --result_dir `pwd`/exp/cosyvoice/test/$mode
-  done
-fi
-
 # train llm
 export CUDA_VISIBLE_DEVICES="0,1,2,3"
 num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')

+ 11 - 1
tools/make_parquet_list.py

@@ -34,7 +34,9 @@ def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file):
     spk_list = [utt2spk[utt] for utt in utt_list]
     uttembedding_list = [utt2embedding[utt] for utt in utt_list]
     spkembedding_list = [spk2embedding[utt2spk[utt]] for utt in utt_list]
-    speech_token_list = [utt2speech_token[utt] for utt in utt_list]
+    speech_token_list = [utt2speech_token.get(utt, []) for utt in utt_list]
+    if args.dpo:
+        reject_speech_token_list = [utt2reject_speech_token[utt] for utt in utt_list]
 
     # 保存到parquet,utt2parquet_file,spk2parquet_file
     df = pd.DataFrame()
@@ -46,6 +48,8 @@ def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file):
     df['utt_embedding'] = uttembedding_list
     df['spk_embedding'] = spkembedding_list
     df['speech_token'] = speech_token_list
+    if args.dpo:
+        df['reject_speech_token'] = reject_speech_token_list
     df.to_parquet(parquet_file)
     with open(utt2parquet_file, 'w') as f:
         json.dump({k: parquet_file for k in utt_list}, f, ensure_ascii=False, indent=2)
@@ -68,6 +72,10 @@ if __name__ == "__main__":
                         type=str)
     parser.add_argument('--des_dir',
                         type=str)
+    parser.add_argument('--dpo',
+                        action='store_true',
+                        default=False,
+                        help='Use Direct Preference Optimization')
     args = parser.parse_args()
 
     utt2wav, utt2text, utt2spk = {}, {}, {}
@@ -86,6 +94,8 @@ if __name__ == "__main__":
     utt2embedding = torch.load('{}/utt2embedding.pt'.format(args.src_dir))
     spk2embedding = torch.load('{}/spk2embedding.pt'.format(args.src_dir))
     utt2speech_token = torch.load('{}/utt2speech_token.pt'.format(args.src_dir))
+    if args.dpo:
+        utt2reject_speech_token = torch.load('{}_reject/utt2speech_token.pt'.format(args.src_dir))
     utts = list(utt2wav.keys())
 
     # Using process pool to speedup

+ 0 - 125
tools/make_parquet_list_dpo.py

@@ -1,125 +0,0 @@
-#!/usr/bin/env python3
-# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#   http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-import argparse
-import logging
-import os
-import json
-from tqdm import tqdm
-import pandas as pd
-import multiprocessing
-import time
-import torch
-
-
-def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file):
-    start_time = time.time()
-    data_list = []
-    for utt in tqdm(utt_list):
-        data = open(utt2wav[utt], 'rb').read()
-        data_list.append(data)
-    wav_list = [utt2wav[utt] for utt in utt_list]
-    text_list = [utt2text[utt] for utt in utt_list]
-    spk_list = [utt2spk[utt] for utt in utt_list]
-    uttembedding_list = [utt2embedding[utt] for utt in utt_list]
-    spkembedding_list = [spk2embedding[utt2spk[utt]] for utt in utt_list]
-    speech_token_list = [utt2speech_token[utt] for utt in utt_list]
-    if utt2reject_speech_token:
-        reject_speech_token_list = [utt2reject_speech_token[utt] for utt in utt_list]
-
-    # 保存到parquet,utt2parquet_file,spk2parquet_file
-    df = pd.DataFrame()
-    df['utt'] = utt_list
-    df['wav'] = wav_list
-    df['audio_data'] = data_list
-    df['text'] = text_list
-    df['spk'] = spk_list
-    df['utt_embedding'] = uttembedding_list
-    df['spk_embedding'] = spkembedding_list
-    df['speech_token'] = speech_token_list
-    if utt2reject_speech_token:
-        df['reject_speech_token'] = reject_speech_token_list
-    df.to_parquet(parquet_file)
-    with open(utt2parquet_file, 'w') as f:
-        json.dump({k: parquet_file for k in utt_list}, f, ensure_ascii=False, indent=2)
-    with open(spk2parquet_file, 'w') as f:
-        json.dump({k: parquet_file for k in list(set(spk_list))}, f, ensure_ascii=False, indent=2)
-    logging.info('spend time {}'.format(time.time() - start_time))
-
-
-if __name__ == "__main__":
-    parser = argparse.ArgumentParser()
-    parser.add_argument('--num_utts_per_parquet',
-                        type=int,
-                        default=1000,
-                        help='num utts per parquet')
-    parser.add_argument('--num_processes',
-                        type=int,
-                        default=1,
-                        help='num processes for make parquets')
-    parser.add_argument('--src_dir',
-                        type=str)
-    parser.add_argument('--des_dir',
-                        type=str)
-    parser.add_argument('--dpo',
-                        action='store_true',
-                        default=False,
-                        help='Use Direct Preference Optimization')
-    args = parser.parse_args()
-
-    utt2wav, utt2text, utt2spk = {}, {}, {}
-    with open('{}/wav.scp'.format(args.src_dir)) as f:
-        for l in f:
-            l = l.replace('\n', '').split()
-            utt2wav[l[0]] = l[1]
-    with open('{}/text'.format(args.src_dir)) as f:
-        for l in f:
-            l = l.replace('\n', '').split()
-            utt2text[l[0]] = ' '.join(l[1:])
-    with open('{}/utt2spk'.format(args.src_dir)) as f:
-        for l in f:
-            l = l.replace('\n', '').split()
-            utt2spk[l[0]] = l[1]
-    utt2embedding = torch.load('{}/utt2embedding.pt'.format(args.src_dir))
-    spk2embedding = torch.load('{}/spk2embedding.pt'.format(args.src_dir))
-    utt2speech_token = torch.load('{}/utt2speech_token.pt'.format(args.src_dir))
-    if args.dpo:
-        utt2reject_speech_token = torch.load('{}/utt2reject_speech_token.pt'.format(args.src_dir))
-    else:
-        utt2reject_speech_token = None
-    utts = list(utt2wav.keys())
-
-    # Using process pool to speedup
-    pool = multiprocessing.Pool(processes=args.num_processes)
-    parquet_list, utt2parquet_list, spk2parquet_list = [], [], []
-    for i, j in enumerate(range(0, len(utts), args.num_utts_per_parquet)):
-        parquet_file = os.path.join(args.des_dir, 'parquet_{:09d}.tar'.format(i))
-        utt2parquet_file = os.path.join(args.des_dir, 'utt2parquet_{:09d}.json'.format(i))
-        spk2parquet_file = os.path.join(args.des_dir, 'spk2parquet_{:09d}.json'.format(i))
-        parquet_list.append(parquet_file)
-        utt2parquet_list.append(utt2parquet_file)
-        spk2parquet_list.append(spk2parquet_file)
-        pool.apply_async(job, (utts[j: j + args.num_utts_per_parquet], parquet_file, utt2parquet_file, spk2parquet_file))
-    pool.close()
-    pool.join()
-
-    with open('{}/data.list'.format(args.des_dir), 'w', encoding='utf8') as f1, \
-            open('{}/utt2data.list'.format(args.des_dir), 'w', encoding='utf8') as f2, \
-            open('{}/spk2data.list'.format(args.des_dir), 'w', encoding='utf8') as f3:
-        for name in parquet_list:
-            f1.write(name + '\n')
-        for name in utt2parquet_list:
-            f2.write(name + '\n')
-        for name in spk2parquet_list:
-            f3.write(name + '\n')