| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- # SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
- # SPDX-License-Identifier: Apache-2.0
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import argparse
- import ast
- import csv
- import os
- from pathlib import Path
- from typing import List, Optional
- import numpy as np
- import torch
- import tensorrt_llm
- from tensorrt_llm.logger import logger
- from tensorrt_llm.runtime import ModelRunnerCpp
- from transformers import AutoTokenizer
- def parse_arguments(args=None):
- parser = argparse.ArgumentParser()
- parser.add_argument(
- '--input_text',
- type=str,
- nargs='+',
- default=["Born in north-east France, Soyer trained as a"])
- parser.add_argument('--tokenizer_dir', type=str, default="meta-llama/Meta-Llama-3-8B-Instruct")
- parser.add_argument('--engine_dir', type=str, default="meta-llama/Meta-Llama-3-8B-Instruct")
- parser.add_argument('--log_level', type=str, default="debug")
- parser.add_argument('--kv_cache_free_gpu_memory_fraction', type=float, default=0.6)
- parser.add_argument('--temperature', type=float, default=0.8)
- parser.add_argument('--top_k', type=int, default=50)
- parser.add_argument('--top_p', type=float, default=0.95)
- return parser.parse_args(args=args)
- def parse_input(tokenizer,
- input_text=None,
- prompt_template=None):
- batch_input_ids = []
- for curr_text in input_text:
- if prompt_template is not None:
- curr_text = prompt_template.format(input_text=curr_text)
- input_ids = tokenizer.encode(
- curr_text)
- batch_input_ids.append(input_ids)
- batch_input_ids = [
- torch.tensor(x, dtype=torch.int32) for x in batch_input_ids
- ]
- logger.debug(f"Input token ids (batch_size = {len(batch_input_ids)}):")
- for i, input_ids in enumerate(batch_input_ids):
- logger.debug(f"Request {i}: {input_ids.tolist()}")
- return batch_input_ids
- def main(args):
- runtime_rank = tensorrt_llm.mpi_rank()
- logger.set_level(args.log_level)
- tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_dir)
- prompt_template = "<|sos|>{input_text}<|task_id|>"
- end_id = tokenizer.convert_tokens_to_ids("<|eos1|>")
- batch_input_ids = parse_input(tokenizer=tokenizer,
- input_text=args.input_text,
- prompt_template=prompt_template)
- input_lengths = [x.size(0) for x in batch_input_ids]
- runner_kwargs = dict(
- engine_dir=args.engine_dir,
- rank=runtime_rank,
- max_output_len=1024,
- enable_context_fmha_fp32_acc=False,
- max_batch_size=len(batch_input_ids),
- max_input_len=max(input_lengths),
- kv_cache_free_gpu_memory_fraction=args.kv_cache_free_gpu_memory_fraction,
- cuda_graph_mode=False,
- gather_generation_logits=False,
- )
- runner = ModelRunnerCpp.from_dir(**runner_kwargs)
- with torch.no_grad():
- outputs = runner.generate(
- batch_input_ids=batch_input_ids,
- max_new_tokens=1024,
- end_id=end_id,
- pad_id=end_id,
- temperature=args.temperature,
- top_k=args.top_k,
- top_p=args.top_p,
- num_return_sequences=1,
- repetition_penalty=1.1,
- random_seed=42,
- streaming=False,
- output_sequence_lengths=True,
- output_generation_logits=False,
- return_dict=True,
- return_all_generated_tokens=False)
- torch.cuda.synchronize()
- output_ids, sequence_lengths = outputs["output_ids"], outputs["sequence_lengths"]
- num_output_sents, num_beams, _ = output_ids.size()
- assert num_beams == 1
- beam = 0
- batch_size = len(input_lengths)
- num_return_sequences = num_output_sents // batch_size
- assert num_return_sequences == 1
- for i in range(batch_size * num_return_sequences):
- batch_idx = i // num_return_sequences
- seq_idx = i % num_return_sequences
- inputs = output_ids[i][0][:input_lengths[batch_idx]].tolist()
- input_text = tokenizer.decode(inputs)
- print(f'Input [Text {batch_idx}]: \"{input_text}\"')
- output_begin = input_lengths[batch_idx]
- output_end = sequence_lengths[i][beam]
- outputs = output_ids[i][beam][output_begin:output_end].tolist()
- output_text = tokenizer.decode(outputs)
- print(f'Output [Text {batch_idx}]: \"{output_text}\"')
- logger.debug(str(outputs))
- if __name__ == '__main__':
- args = parse_arguments()
- main(args)
|