test_llm.py 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143
  1. # SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
  2. # SPDX-License-Identifier: Apache-2.0
  3. #
  4. # Licensed under the Apache License, Version 2.0 (the "License");
  5. # you may not use this file except in compliance with the License.
  6. # You may obtain a copy of the License at
  7. #
  8. # http://www.apache.org/licenses/LICENSE-2.0
  9. #
  10. # Unless required by applicable law or agreed to in writing, software
  11. # distributed under the License is distributed on an "AS IS" BASIS,
  12. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. # See the License for the specific language governing permissions and
  14. # limitations under the License.
  15. import argparse
  16. import ast
  17. import csv
  18. import os
  19. from pathlib import Path
  20. from typing import List, Optional
  21. import numpy as np
  22. import torch
  23. import tensorrt_llm
  24. from tensorrt_llm.logger import logger
  25. from tensorrt_llm.runtime import ModelRunnerCpp
  26. from transformers import AutoTokenizer
  27. def parse_arguments(args=None):
  28. parser = argparse.ArgumentParser()
  29. parser.add_argument(
  30. '--input_text',
  31. type=str,
  32. nargs='+',
  33. default=["Born in north-east France, Soyer trained as a"])
  34. parser.add_argument('--tokenizer_dir', type=str, default="meta-llama/Meta-Llama-3-8B-Instruct")
  35. parser.add_argument('--engine_dir', type=str, default="meta-llama/Meta-Llama-3-8B-Instruct")
  36. parser.add_argument('--log_level', type=str, default="debug")
  37. parser.add_argument('--kv_cache_free_gpu_memory_fraction', type=float, default=0.6)
  38. parser.add_argument('--temperature', type=float, default=0.8)
  39. parser.add_argument('--top_k', type=int, default=50)
  40. parser.add_argument('--top_p', type=float, default=0.95)
  41. return parser.parse_args(args=args)
  42. def parse_input(tokenizer,
  43. input_text=None,
  44. prompt_template=None):
  45. batch_input_ids = []
  46. for curr_text in input_text:
  47. if prompt_template is not None:
  48. curr_text = prompt_template.format(input_text=curr_text)
  49. input_ids = tokenizer.encode(
  50. curr_text)
  51. batch_input_ids.append(input_ids)
  52. batch_input_ids = [
  53. torch.tensor(x, dtype=torch.int32) for x in batch_input_ids
  54. ]
  55. logger.debug(f"Input token ids (batch_size = {len(batch_input_ids)}):")
  56. for i, input_ids in enumerate(batch_input_ids):
  57. logger.debug(f"Request {i}: {input_ids.tolist()}")
  58. return batch_input_ids
  59. def main(args):
  60. runtime_rank = tensorrt_llm.mpi_rank()
  61. logger.set_level(args.log_level)
  62. tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_dir)
  63. prompt_template = "<|sos|>{input_text}<|task_id|>"
  64. end_id = tokenizer.convert_tokens_to_ids("<|eos1|>")
  65. batch_input_ids = parse_input(tokenizer=tokenizer,
  66. input_text=args.input_text,
  67. prompt_template=prompt_template)
  68. input_lengths = [x.size(0) for x in batch_input_ids]
  69. runner_kwargs = dict(
  70. engine_dir=args.engine_dir,
  71. rank=runtime_rank,
  72. max_output_len=1024,
  73. enable_context_fmha_fp32_acc=False,
  74. max_batch_size=len(batch_input_ids),
  75. max_input_len=max(input_lengths),
  76. kv_cache_free_gpu_memory_fraction=args.kv_cache_free_gpu_memory_fraction,
  77. cuda_graph_mode=False,
  78. gather_generation_logits=False,
  79. )
  80. runner = ModelRunnerCpp.from_dir(**runner_kwargs)
  81. with torch.no_grad():
  82. outputs = runner.generate(
  83. batch_input_ids=batch_input_ids,
  84. max_new_tokens=1024,
  85. end_id=end_id,
  86. pad_id=end_id,
  87. temperature=args.temperature,
  88. top_k=args.top_k,
  89. top_p=args.top_p,
  90. num_return_sequences=1,
  91. repetition_penalty=1.1,
  92. random_seed=42,
  93. streaming=False,
  94. output_sequence_lengths=True,
  95. output_generation_logits=False,
  96. return_dict=True,
  97. return_all_generated_tokens=False)
  98. torch.cuda.synchronize()
  99. output_ids, sequence_lengths = outputs["output_ids"], outputs["sequence_lengths"]
  100. num_output_sents, num_beams, _ = output_ids.size()
  101. assert num_beams == 1
  102. beam = 0
  103. batch_size = len(input_lengths)
  104. num_return_sequences = num_output_sents // batch_size
  105. assert num_return_sequences == 1
  106. for i in range(batch_size * num_return_sequences):
  107. batch_idx = i // num_return_sequences
  108. seq_idx = i % num_return_sequences
  109. inputs = output_ids[i][0][:input_lengths[batch_idx]].tolist()
  110. input_text = tokenizer.decode(inputs)
  111. print(f'Input [Text {batch_idx}]: \"{input_text}\"')
  112. output_begin = input_lengths[batch_idx]
  113. output_end = sequence_lengths[i][beam]
  114. outputs = output_ids[i][beam][output_begin:output_end].tolist()
  115. output_text = tokenizer.decode(outputs)
  116. print(f'Output [Text {batch_idx}]: \"{output_text}\"')
  117. logger.debug(str(outputs))
  118. if __name__ == '__main__':
  119. args = parse_arguments()
  120. main(args)