|
|
@@ -0,0 +1,321 @@
|
|
|
+# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
|
|
+# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
|
|
|
+# 2024 Alibaba Inc (Xiang Lyu)
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+# Modified from ESPnet(https://github.com/espnet/espnet)
|
|
|
+"""Encoder definition."""
|
|
|
+from typing import Tuple
|
|
|
+
|
|
|
+import torch
|
|
|
+from torch import nn
|
|
|
+from torch.nn import functional as F
|
|
|
+
|
|
|
+from cosyvoice.transformer.convolution import ConvolutionModule
|
|
|
+from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer
|
|
|
+from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
|
|
+from cosyvoice.utils.class_utils import (
|
|
|
+ COSYVOICE_EMB_CLASSES,
|
|
|
+ COSYVOICE_SUBSAMPLE_CLASSES,
|
|
|
+ COSYVOICE_ATTENTION_CLASSES,
|
|
|
+ COSYVOICE_ACTIVATION_CLASSES,
|
|
|
+)
|
|
|
+from cosyvoice.utils.mask import make_pad_mask
|
|
|
+from cosyvoice.utils.mask import add_optional_chunk_mask
|
|
|
+
|
|
|
+
|
|
|
+class Upsample1D(nn.Module):
|
|
|
+ """A 1D upsampling layer with an optional convolution.
|
|
|
+
|
|
|
+ Parameters:
|
|
|
+ channels (`int`):
|
|
|
+ number of channels in the inputs and outputs.
|
|
|
+ use_conv (`bool`, default `False`):
|
|
|
+ option to use a convolution.
|
|
|
+ use_conv_transpose (`bool`, default `False`):
|
|
|
+ option to use a convolution transpose.
|
|
|
+ out_channels (`int`, optional):
|
|
|
+ number of output channels. Defaults to `channels`.
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(self, channels: int, out_channels: int, stride: int = 2):
|
|
|
+ super().__init__()
|
|
|
+ self.channels = channels
|
|
|
+ self.out_channels = out_channels
|
|
|
+ self.stride = stride
|
|
|
+ # In this mode, first repeat interpolate, than conv with stride=1
|
|
|
+ self.conv = nn.Conv1d(
|
|
|
+ self.channels, self.out_channels, stride * 2 + 1, stride = 1,
|
|
|
+ padding=0,
|
|
|
+ )
|
|
|
+
|
|
|
+ def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor):
|
|
|
+ outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest")
|
|
|
+ outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
|
|
|
+ outputs = self.conv(outputs)
|
|
|
+ return outputs, input_lengths * self.stride
|
|
|
+
|
|
|
+
|
|
|
+class PreLookaheadLayer(nn.Module):
|
|
|
+ def __init__(self, channels: int, pre_lookahead_len: int = 1):
|
|
|
+ super().__init__()
|
|
|
+ self.channels = channels
|
|
|
+ self.pre_lookahead_len = pre_lookahead_len
|
|
|
+ self.conv1 = nn.Conv1d(
|
|
|
+ channels, channels,
|
|
|
+ kernel_size=pre_lookahead_len + 1,
|
|
|
+ stride=1, padding=0,
|
|
|
+ )
|
|
|
+ self.conv2 = nn.Conv1d(
|
|
|
+ channels, channels,
|
|
|
+ kernel_size=3, stride=1, padding=0,
|
|
|
+ )
|
|
|
+
|
|
|
+ def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
|
|
+ """
|
|
|
+ inputs: (batch_size, seq_len, channels)
|
|
|
+ """
|
|
|
+ outputs = inputs.transpose(1, 2).contiguous()
|
|
|
+ # look ahead
|
|
|
+ outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
|
|
|
+ outputs = F.leaky_relu(self.conv1(outputs))
|
|
|
+ # outputs
|
|
|
+ outputs = F.pad(outputs, (2, 0), mode='constant', value=0.0)
|
|
|
+ outputs = self.conv2(outputs)
|
|
|
+ outputs = outputs.transpose(1, 2).contiguous()
|
|
|
+
|
|
|
+ # residual connection
|
|
|
+ outputs = outputs + inputs
|
|
|
+ return outputs
|
|
|
+
|
|
|
+
|
|
|
+class UpsampleConformerEncoder(torch.nn.Module):
|
|
|
+
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ input_size: int,
|
|
|
+ output_size: int = 256,
|
|
|
+ attention_heads: int = 4,
|
|
|
+ linear_units: int = 2048,
|
|
|
+ num_blocks: int = 6,
|
|
|
+ dropout_rate: float = 0.1,
|
|
|
+ positional_dropout_rate: float = 0.1,
|
|
|
+ attention_dropout_rate: float = 0.0,
|
|
|
+ input_layer: str = "conv2d",
|
|
|
+ pos_enc_layer_type: str = "rel_pos",
|
|
|
+ normalize_before: bool = True,
|
|
|
+ static_chunk_size: int = 0,
|
|
|
+ use_dynamic_chunk: bool = False,
|
|
|
+ global_cmvn: torch.nn.Module = None,
|
|
|
+ use_dynamic_left_chunk: bool = False,
|
|
|
+ positionwise_conv_kernel_size: int = 1,
|
|
|
+ macaron_style: bool = True,
|
|
|
+ selfattention_layer_type: str = "rel_selfattn",
|
|
|
+ activation_type: str = "swish",
|
|
|
+ use_cnn_module: bool = True,
|
|
|
+ cnn_module_kernel: int = 15,
|
|
|
+ causal: bool = False,
|
|
|
+ cnn_module_norm: str = "batch_norm",
|
|
|
+ key_bias: bool = True,
|
|
|
+ gradient_checkpointing: bool = False,
|
|
|
+ ):
|
|
|
+ """
|
|
|
+ Args:
|
|
|
+ input_size (int): input dim
|
|
|
+ output_size (int): dimension of attention
|
|
|
+ attention_heads (int): the number of heads of multi head attention
|
|
|
+ linear_units (int): the hidden units number of position-wise feed
|
|
|
+ forward
|
|
|
+ num_blocks (int): the number of decoder blocks
|
|
|
+ dropout_rate (float): dropout rate
|
|
|
+ attention_dropout_rate (float): dropout rate in attention
|
|
|
+ positional_dropout_rate (float): dropout rate after adding
|
|
|
+ positional encoding
|
|
|
+ input_layer (str): input layer type.
|
|
|
+ optional [linear, conv2d, conv2d6, conv2d8]
|
|
|
+ pos_enc_layer_type (str): Encoder positional encoding layer type.
|
|
|
+ opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
|
|
|
+ normalize_before (bool):
|
|
|
+ True: use layer_norm before each sub-block of a layer.
|
|
|
+ False: use layer_norm after each sub-block of a layer.
|
|
|
+ static_chunk_size (int): chunk size for static chunk training and
|
|
|
+ decoding
|
|
|
+ use_dynamic_chunk (bool): whether use dynamic chunk size for
|
|
|
+ training or not, You can only use fixed chunk(chunk_size > 0)
|
|
|
+ or dyanmic chunk size(use_dynamic_chunk = True)
|
|
|
+ global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
|
|
|
+ use_dynamic_left_chunk (bool): whether use dynamic left chunk in
|
|
|
+ dynamic chunk training
|
|
|
+ key_bias: whether use bias in attention.linear_k, False for whisper models.
|
|
|
+ gradient_checkpointing: rerunning a forward-pass segment for each
|
|
|
+ checkpointed segment during backward.
|
|
|
+ """
|
|
|
+ super().__init__()
|
|
|
+ self._output_size = output_size
|
|
|
+
|
|
|
+ self.global_cmvn = global_cmvn
|
|
|
+ self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
|
|
|
+ input_size,
|
|
|
+ output_size,
|
|
|
+ dropout_rate,
|
|
|
+ COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
|
|
|
+ positional_dropout_rate),
|
|
|
+ )
|
|
|
+
|
|
|
+ self.normalize_before = normalize_before
|
|
|
+ self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
|
|
|
+ self.static_chunk_size = static_chunk_size
|
|
|
+ self.use_dynamic_chunk = use_dynamic_chunk
|
|
|
+ self.use_dynamic_left_chunk = use_dynamic_left_chunk
|
|
|
+ self.gradient_checkpointing = gradient_checkpointing
|
|
|
+ activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
|
|
+ # self-attention module definition
|
|
|
+ encoder_selfattn_layer_args = (
|
|
|
+ attention_heads,
|
|
|
+ output_size,
|
|
|
+ attention_dropout_rate,
|
|
|
+ key_bias,
|
|
|
+ )
|
|
|
+ # feed-forward module definition
|
|
|
+ positionwise_layer_args = (
|
|
|
+ output_size,
|
|
|
+ linear_units,
|
|
|
+ dropout_rate,
|
|
|
+ activation,
|
|
|
+ )
|
|
|
+ # convolution module definition
|
|
|
+ convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
|
|
+ cnn_module_norm, causal)
|
|
|
+ self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3)
|
|
|
+ self.encoders = torch.nn.ModuleList([
|
|
|
+ ConformerEncoderLayer(
|
|
|
+ output_size,
|
|
|
+ COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
|
|
|
+ *encoder_selfattn_layer_args),
|
|
|
+ PositionwiseFeedForward(*positionwise_layer_args),
|
|
|
+ PositionwiseFeedForward(
|
|
|
+ *positionwise_layer_args) if macaron_style else None,
|
|
|
+ ConvolutionModule(
|
|
|
+ *convolution_layer_args) if use_cnn_module else None,
|
|
|
+ dropout_rate,
|
|
|
+ normalize_before,
|
|
|
+ ) for _ in range(num_blocks)
|
|
|
+ ])
|
|
|
+ self.up_layer = Upsample1D(channels=512, out_channels=512, stride=2)
|
|
|
+ self.up_embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
|
|
|
+ input_size,
|
|
|
+ output_size,
|
|
|
+ dropout_rate,
|
|
|
+ COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
|
|
|
+ positional_dropout_rate),
|
|
|
+ )
|
|
|
+ self.up_encoders = torch.nn.ModuleList([
|
|
|
+ ConformerEncoderLayer(
|
|
|
+ output_size,
|
|
|
+ COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
|
|
|
+ *encoder_selfattn_layer_args),
|
|
|
+ PositionwiseFeedForward(*positionwise_layer_args),
|
|
|
+ PositionwiseFeedForward(
|
|
|
+ *positionwise_layer_args) if macaron_style else None,
|
|
|
+ ConvolutionModule(
|
|
|
+ *convolution_layer_args) if use_cnn_module else None,
|
|
|
+ dropout_rate,
|
|
|
+ normalize_before,
|
|
|
+ ) for _ in range(4)
|
|
|
+ ])
|
|
|
+
|
|
|
+ def output_size(self) -> int:
|
|
|
+ return self._output_size
|
|
|
+
|
|
|
+ def forward(
|
|
|
+ self,
|
|
|
+ xs: torch.Tensor,
|
|
|
+ xs_lens: torch.Tensor,
|
|
|
+ decoding_chunk_size: int = 0,
|
|
|
+ num_decoding_left_chunks: int = -1,
|
|
|
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
+ """Embed positions in tensor.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ xs: padded input tensor (B, T, D)
|
|
|
+ xs_lens: input length (B)
|
|
|
+ decoding_chunk_size: decoding chunk size for dynamic chunk
|
|
|
+ 0: default for training, use random dynamic chunk.
|
|
|
+ <0: for decoding, use full chunk.
|
|
|
+ >0: for decoding, use fixed chunk size as set.
|
|
|
+ num_decoding_left_chunks: number of left chunks, this is for decoding,
|
|
|
+ the chunk size is decoding_chunk_size.
|
|
|
+ >=0: use num_decoding_left_chunks
|
|
|
+ <0: use all left chunks
|
|
|
+ Returns:
|
|
|
+ encoder output tensor xs, and subsampled masks
|
|
|
+ xs: padded output tensor (B, T' ~= T/subsample_rate, D)
|
|
|
+ masks: torch.Tensor batch padding mask after subsample
|
|
|
+ (B, 1, T' ~= T/subsample_rate)
|
|
|
+ NOTE(xcsong):
|
|
|
+ We pass the `__call__` method of the modules instead of `forward` to the
|
|
|
+ checkpointing API because `__call__` attaches all the hooks of the module.
|
|
|
+ https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
|
|
+ """
|
|
|
+ T = xs.size(1)
|
|
|
+ masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
|
|
+ if self.global_cmvn is not None:
|
|
|
+ xs = self.global_cmvn(xs)
|
|
|
+ xs, pos_emb, masks = self.embed(xs, masks)
|
|
|
+ mask_pad = masks # (B, 1, T/subsample_rate)
|
|
|
+ chunk_masks = add_optional_chunk_mask(xs, masks,
|
|
|
+ self.use_dynamic_chunk,
|
|
|
+ self.use_dynamic_left_chunk,
|
|
|
+ decoding_chunk_size,
|
|
|
+ self.static_chunk_size,
|
|
|
+ num_decoding_left_chunks)
|
|
|
+ # lookahead + conformer encoder
|
|
|
+ xs = self.pre_lookahead_layer(xs)
|
|
|
+ xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
|
|
+
|
|
|
+ # upsample + conformer encoder
|
|
|
+ xs = xs.transpose(1, 2).contiguous()
|
|
|
+ xs, xs_lens = self.up_layer(xs, xs_lens)
|
|
|
+ xs = xs.transpose(1, 2).contiguous()
|
|
|
+ T = xs.size(1)
|
|
|
+ masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
|
|
+ xs, pos_emb, masks = self.up_embed(xs, masks)
|
|
|
+ mask_pad = masks # (B, 1, T/subsample_rate)
|
|
|
+ chunk_masks = add_optional_chunk_mask(xs, masks,
|
|
|
+ self.use_dynamic_chunk,
|
|
|
+ self.use_dynamic_left_chunk,
|
|
|
+ decoding_chunk_size,
|
|
|
+ self.static_chunk_size * self.up_layer.stride,
|
|
|
+ num_decoding_left_chunks)
|
|
|
+ xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad)
|
|
|
+
|
|
|
+ if self.normalize_before:
|
|
|
+ xs = self.after_norm(xs)
|
|
|
+ # Here we assume the mask is not changed in encoder layers, so just
|
|
|
+ # return the masks before encoder layers, and the masks will be used
|
|
|
+ # for cross attention with decoder later
|
|
|
+ return xs, masks
|
|
|
+
|
|
|
+ def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
|
|
|
+ pos_emb: torch.Tensor,
|
|
|
+ mask_pad: torch.Tensor) -> torch.Tensor:
|
|
|
+ for layer in self.encoders:
|
|
|
+ xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
|
|
+ return xs
|
|
|
+
|
|
|
+ def forward_up_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
|
|
|
+ pos_emb: torch.Tensor,
|
|
|
+ mask_pad: torch.Tensor) -> torch.Tensor:
|
|
|
+ for layer in self.up_encoders:
|
|
|
+ xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
|
|
+ return xs
|