|
|
@@ -0,0 +1,472 @@
|
|
|
+# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
|
|
|
+# 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
|
|
|
+# 2024 Alibaba Inc (Xiang Lyu)
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+# Modified from ESPnet(https://github.com/espnet/espnet)
|
|
|
+"""Encoder definition."""
|
|
|
+from typing import Tuple
|
|
|
+
|
|
|
+import torch
|
|
|
+import torch.utils.checkpoint as ckpt
|
|
|
+
|
|
|
+from cosyvoice.transformer.convolution import ConvolutionModule
|
|
|
+from cosyvoice.transformer.encoder_layer import TransformerEncoderLayer
|
|
|
+from cosyvoice.transformer.encoder_layer import ConformerEncoderLayer
|
|
|
+from cosyvoice.transformer.positionwise_feed_forward import PositionwiseFeedForward
|
|
|
+from cosyvoice.utils.class_utils import (
|
|
|
+ COSYVOICE_EMB_CLASSES,
|
|
|
+ COSYVOICE_SUBSAMPLE_CLASSES,
|
|
|
+ COSYVOICE_ATTENTION_CLASSES,
|
|
|
+ COSYVOICE_ACTIVATION_CLASSES,
|
|
|
+)
|
|
|
+from cosyvoice.utils.mask import make_pad_mask
|
|
|
+from cosyvoice.utils.mask import add_optional_chunk_mask
|
|
|
+
|
|
|
+
|
|
|
+class BaseEncoder(torch.nn.Module):
|
|
|
+
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ input_size: int,
|
|
|
+ output_size: int = 256,
|
|
|
+ attention_heads: int = 4,
|
|
|
+ linear_units: int = 2048,
|
|
|
+ num_blocks: int = 6,
|
|
|
+ dropout_rate: float = 0.1,
|
|
|
+ positional_dropout_rate: float = 0.1,
|
|
|
+ attention_dropout_rate: float = 0.0,
|
|
|
+ input_layer: str = "conv2d",
|
|
|
+ pos_enc_layer_type: str = "abs_pos",
|
|
|
+ normalize_before: bool = True,
|
|
|
+ static_chunk_size: int = 0,
|
|
|
+ use_dynamic_chunk: bool = False,
|
|
|
+ global_cmvn: torch.nn.Module = None,
|
|
|
+ use_dynamic_left_chunk: bool = False,
|
|
|
+ gradient_checkpointing: bool = False,
|
|
|
+ ):
|
|
|
+ """
|
|
|
+ Args:
|
|
|
+ input_size (int): input dim
|
|
|
+ output_size (int): dimension of attention
|
|
|
+ attention_heads (int): the number of heads of multi head attention
|
|
|
+ linear_units (int): the hidden units number of position-wise feed
|
|
|
+ forward
|
|
|
+ num_blocks (int): the number of decoder blocks
|
|
|
+ dropout_rate (float): dropout rate
|
|
|
+ attention_dropout_rate (float): dropout rate in attention
|
|
|
+ positional_dropout_rate (float): dropout rate after adding
|
|
|
+ positional encoding
|
|
|
+ input_layer (str): input layer type.
|
|
|
+ optional [linear, conv2d, conv2d6, conv2d8]
|
|
|
+ pos_enc_layer_type (str): Encoder positional encoding layer type.
|
|
|
+ opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
|
|
|
+ normalize_before (bool):
|
|
|
+ True: use layer_norm before each sub-block of a layer.
|
|
|
+ False: use layer_norm after each sub-block of a layer.
|
|
|
+ static_chunk_size (int): chunk size for static chunk training and
|
|
|
+ decoding
|
|
|
+ use_dynamic_chunk (bool): whether use dynamic chunk size for
|
|
|
+ training or not, You can only use fixed chunk(chunk_size > 0)
|
|
|
+ or dyanmic chunk size(use_dynamic_chunk = True)
|
|
|
+ global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module
|
|
|
+ use_dynamic_left_chunk (bool): whether use dynamic left chunk in
|
|
|
+ dynamic chunk training
|
|
|
+ key_bias: whether use bias in attention.linear_k, False for whisper models.
|
|
|
+ gradient_checkpointing: rerunning a forward-pass segment for each
|
|
|
+ checkpointed segment during backward.
|
|
|
+ """
|
|
|
+ super().__init__()
|
|
|
+ self._output_size = output_size
|
|
|
+
|
|
|
+ self.global_cmvn = global_cmvn
|
|
|
+ self.embed = COSYVOICE_SUBSAMPLE_CLASSES[input_layer](
|
|
|
+ input_size,
|
|
|
+ output_size,
|
|
|
+ dropout_rate,
|
|
|
+ COSYVOICE_EMB_CLASSES[pos_enc_layer_type](output_size,
|
|
|
+ positional_dropout_rate),
|
|
|
+ )
|
|
|
+
|
|
|
+ self.normalize_before = normalize_before
|
|
|
+ self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5)
|
|
|
+ self.static_chunk_size = static_chunk_size
|
|
|
+ self.use_dynamic_chunk = use_dynamic_chunk
|
|
|
+ self.use_dynamic_left_chunk = use_dynamic_left_chunk
|
|
|
+ self.gradient_checkpointing = gradient_checkpointing
|
|
|
+
|
|
|
+ def output_size(self) -> int:
|
|
|
+ return self._output_size
|
|
|
+
|
|
|
+ def forward(
|
|
|
+ self,
|
|
|
+ xs: torch.Tensor,
|
|
|
+ xs_lens: torch.Tensor,
|
|
|
+ decoding_chunk_size: int = 0,
|
|
|
+ num_decoding_left_chunks: int = -1,
|
|
|
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
+ """Embed positions in tensor.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ xs: padded input tensor (B, T, D)
|
|
|
+ xs_lens: input length (B)
|
|
|
+ decoding_chunk_size: decoding chunk size for dynamic chunk
|
|
|
+ 0: default for training, use random dynamic chunk.
|
|
|
+ <0: for decoding, use full chunk.
|
|
|
+ >0: for decoding, use fixed chunk size as set.
|
|
|
+ num_decoding_left_chunks: number of left chunks, this is for decoding,
|
|
|
+ the chunk size is decoding_chunk_size.
|
|
|
+ >=0: use num_decoding_left_chunks
|
|
|
+ <0: use all left chunks
|
|
|
+ Returns:
|
|
|
+ encoder output tensor xs, and subsampled masks
|
|
|
+ xs: padded output tensor (B, T' ~= T/subsample_rate, D)
|
|
|
+ masks: torch.Tensor batch padding mask after subsample
|
|
|
+ (B, 1, T' ~= T/subsample_rate)
|
|
|
+ NOTE(xcsong):
|
|
|
+ We pass the `__call__` method of the modules instead of `forward` to the
|
|
|
+ checkpointing API because `__call__` attaches all the hooks of the module.
|
|
|
+ https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
|
|
+ """
|
|
|
+ T = xs.size(1)
|
|
|
+ masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
|
|
+ if self.global_cmvn is not None:
|
|
|
+ xs = self.global_cmvn(xs)
|
|
|
+ xs, pos_emb, masks = self.embed(xs, masks)
|
|
|
+ mask_pad = masks # (B, 1, T/subsample_rate)
|
|
|
+ chunk_masks = add_optional_chunk_mask(xs, masks,
|
|
|
+ self.use_dynamic_chunk,
|
|
|
+ self.use_dynamic_left_chunk,
|
|
|
+ decoding_chunk_size,
|
|
|
+ self.static_chunk_size,
|
|
|
+ num_decoding_left_chunks)
|
|
|
+ if self.gradient_checkpointing and self.training:
|
|
|
+ xs = self.forward_layers_checkpointed(xs, chunk_masks, pos_emb,
|
|
|
+ mask_pad)
|
|
|
+ else:
|
|
|
+ xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
|
|
+ if self.normalize_before:
|
|
|
+ xs = self.after_norm(xs)
|
|
|
+ # Here we assume the mask is not changed in encoder layers, so just
|
|
|
+ # return the masks before encoder layers, and the masks will be used
|
|
|
+ # for cross attention with decoder later
|
|
|
+ return xs, masks
|
|
|
+
|
|
|
+ def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor,
|
|
|
+ pos_emb: torch.Tensor,
|
|
|
+ mask_pad: torch.Tensor) -> torch.Tensor:
|
|
|
+ for layer in self.encoders:
|
|
|
+ xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
|
|
+ return xs
|
|
|
+
|
|
|
+ @torch.jit.ignore(drop=True)
|
|
|
+ def forward_layers_checkpointed(self, xs: torch.Tensor,
|
|
|
+ chunk_masks: torch.Tensor,
|
|
|
+ pos_emb: torch.Tensor,
|
|
|
+ mask_pad: torch.Tensor) -> torch.Tensor:
|
|
|
+ for layer in self.encoders:
|
|
|
+ xs, chunk_masks, _, _ = ckpt.checkpoint(layer.__call__, xs,
|
|
|
+ chunk_masks, pos_emb,
|
|
|
+ mask_pad)
|
|
|
+ return xs
|
|
|
+
|
|
|
+ def forward_chunk(
|
|
|
+ self,
|
|
|
+ xs: torch.Tensor,
|
|
|
+ offset: int,
|
|
|
+ required_cache_size: int,
|
|
|
+ att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
|
|
+ cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
|
|
+ att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
|
|
|
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
|
+ """ Forward just one chunk
|
|
|
+
|
|
|
+ Args:
|
|
|
+ xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
|
|
|
+ where `time == (chunk_size - 1) * subsample_rate + \
|
|
|
+ subsample.right_context + 1`
|
|
|
+ offset (int): current offset in encoder output time stamp
|
|
|
+ required_cache_size (int): cache size required for next chunk
|
|
|
+ compuation
|
|
|
+ >=0: actual cache size
|
|
|
+ <0: means all history cache is required
|
|
|
+ att_cache (torch.Tensor): cache tensor for KEY & VALUE in
|
|
|
+ transformer/conformer attention, with shape
|
|
|
+ (elayers, head, cache_t1, d_k * 2), where
|
|
|
+ `head * d_k == hidden-dim` and
|
|
|
+ `cache_t1 == chunk_size * num_decoding_left_chunks`.
|
|
|
+ cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
|
|
|
+ (elayers, b=1, hidden-dim, cache_t2), where
|
|
|
+ `cache_t2 == cnn.lorder - 1`
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ torch.Tensor: output of current input xs,
|
|
|
+ with shape (b=1, chunk_size, hidden-dim).
|
|
|
+ torch.Tensor: new attention cache required for next chunk, with
|
|
|
+ dynamic shape (elayers, head, ?, d_k * 2)
|
|
|
+ depending on required_cache_size.
|
|
|
+ torch.Tensor: new conformer cnn cache required for next chunk, with
|
|
|
+ same shape as the original cnn_cache.
|
|
|
+
|
|
|
+ """
|
|
|
+ assert xs.size(0) == 1
|
|
|
+ # tmp_masks is just for interface compatibility
|
|
|
+ tmp_masks = torch.ones(1,
|
|
|
+ xs.size(1),
|
|
|
+ device=xs.device,
|
|
|
+ dtype=torch.bool)
|
|
|
+ tmp_masks = tmp_masks.unsqueeze(1)
|
|
|
+ if self.global_cmvn is not None:
|
|
|
+ xs = self.global_cmvn(xs)
|
|
|
+ # NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
|
|
|
+ xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
|
|
|
+ # NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim)
|
|
|
+ elayers, cache_t1 = att_cache.size(0), att_cache.size(2)
|
|
|
+ chunk_size = xs.size(1)
|
|
|
+ attention_key_size = cache_t1 + chunk_size
|
|
|
+ pos_emb = self.embed.position_encoding(offset=offset - cache_t1,
|
|
|
+ size=attention_key_size)
|
|
|
+ if required_cache_size < 0:
|
|
|
+ next_cache_start = 0
|
|
|
+ elif required_cache_size == 0:
|
|
|
+ next_cache_start = attention_key_size
|
|
|
+ else:
|
|
|
+ next_cache_start = max(attention_key_size - required_cache_size, 0)
|
|
|
+ r_att_cache = []
|
|
|
+ r_cnn_cache = []
|
|
|
+ for i, layer in enumerate(self.encoders):
|
|
|
+ # NOTE(xcsong): Before layer.forward
|
|
|
+ # shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2),
|
|
|
+ # shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2)
|
|
|
+ xs, _, new_att_cache, new_cnn_cache = layer(
|
|
|
+ xs,
|
|
|
+ att_mask,
|
|
|
+ pos_emb,
|
|
|
+ att_cache=att_cache[i:i + 1] if elayers > 0 else att_cache,
|
|
|
+ cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache)
|
|
|
+ # NOTE(xcsong): After layer.forward
|
|
|
+ # shape(new_att_cache) is (1, head, attention_key_size, d_k * 2),
|
|
|
+ # shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2)
|
|
|
+ r_att_cache.append(new_att_cache[:, :, next_cache_start:, :])
|
|
|
+ r_cnn_cache.append(new_cnn_cache.unsqueeze(0))
|
|
|
+ if self.normalize_before:
|
|
|
+ xs = self.after_norm(xs)
|
|
|
+
|
|
|
+ # NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2),
|
|
|
+ # ? may be larger than cache_t1, it depends on required_cache_size
|
|
|
+ r_att_cache = torch.cat(r_att_cache, dim=0)
|
|
|
+ # NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2)
|
|
|
+ r_cnn_cache = torch.cat(r_cnn_cache, dim=0)
|
|
|
+
|
|
|
+ return (xs, r_att_cache, r_cnn_cache)
|
|
|
+
|
|
|
+ def forward_chunk_by_chunk(
|
|
|
+ self,
|
|
|
+ xs: torch.Tensor,
|
|
|
+ decoding_chunk_size: int,
|
|
|
+ num_decoding_left_chunks: int = -1,
|
|
|
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
+ """ Forward input chunk by chunk with chunk_size like a streaming
|
|
|
+ fashion
|
|
|
+
|
|
|
+ Here we should pay special attention to computation cache in the
|
|
|
+ streaming style forward chunk by chunk. Three things should be taken
|
|
|
+ into account for computation in the current network:
|
|
|
+ 1. transformer/conformer encoder layers output cache
|
|
|
+ 2. convolution in conformer
|
|
|
+ 3. convolution in subsampling
|
|
|
+
|
|
|
+ However, we don't implement subsampling cache for:
|
|
|
+ 1. We can control subsampling module to output the right result by
|
|
|
+ overlapping input instead of cache left context, even though it
|
|
|
+ wastes some computation, but subsampling only takes a very
|
|
|
+ small fraction of computation in the whole model.
|
|
|
+ 2. Typically, there are several covolution layers with subsampling
|
|
|
+ in subsampling module, it is tricky and complicated to do cache
|
|
|
+ with different convolution layers with different subsampling
|
|
|
+ rate.
|
|
|
+ 3. Currently, nn.Sequential is used to stack all the convolution
|
|
|
+ layers in subsampling, we need to rewrite it to make it work
|
|
|
+ with cache, which is not prefered.
|
|
|
+ Args:
|
|
|
+ xs (torch.Tensor): (1, max_len, dim)
|
|
|
+ chunk_size (int): decoding chunk size
|
|
|
+ """
|
|
|
+ assert decoding_chunk_size > 0
|
|
|
+ # The model is trained by static or dynamic chunk
|
|
|
+ assert self.static_chunk_size > 0 or self.use_dynamic_chunk
|
|
|
+ subsampling = self.embed.subsampling_rate
|
|
|
+ context = self.embed.right_context + 1 # Add current frame
|
|
|
+ stride = subsampling * decoding_chunk_size
|
|
|
+ decoding_window = (decoding_chunk_size - 1) * subsampling + context
|
|
|
+ num_frames = xs.size(1)
|
|
|
+ att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
|
|
|
+ cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
|
|
|
+ outputs = []
|
|
|
+ offset = 0
|
|
|
+ required_cache_size = decoding_chunk_size * num_decoding_left_chunks
|
|
|
+
|
|
|
+ # Feed forward overlap input step by step
|
|
|
+ for cur in range(0, num_frames - context + 1, stride):
|
|
|
+ end = min(cur + decoding_window, num_frames)
|
|
|
+ chunk_xs = xs[:, cur:end, :]
|
|
|
+ (y, att_cache,
|
|
|
+ cnn_cache) = self.forward_chunk(chunk_xs, offset,
|
|
|
+ required_cache_size, att_cache,
|
|
|
+ cnn_cache)
|
|
|
+ outputs.append(y)
|
|
|
+ offset += y.size(1)
|
|
|
+ ys = torch.cat(outputs, 1)
|
|
|
+ masks = torch.ones((1, 1, ys.size(1)),
|
|
|
+ device=ys.device,
|
|
|
+ dtype=torch.bool)
|
|
|
+ return ys, masks
|
|
|
+
|
|
|
+
|
|
|
+class TransformerEncoder(BaseEncoder):
|
|
|
+ """Transformer encoder module."""
|
|
|
+
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ input_size: int,
|
|
|
+ output_size: int = 256,
|
|
|
+ attention_heads: int = 4,
|
|
|
+ linear_units: int = 2048,
|
|
|
+ num_blocks: int = 6,
|
|
|
+ dropout_rate: float = 0.1,
|
|
|
+ positional_dropout_rate: float = 0.1,
|
|
|
+ attention_dropout_rate: float = 0.0,
|
|
|
+ input_layer: str = "conv2d",
|
|
|
+ pos_enc_layer_type: str = "abs_pos",
|
|
|
+ normalize_before: bool = True,
|
|
|
+ static_chunk_size: int = 0,
|
|
|
+ use_dynamic_chunk: bool = False,
|
|
|
+ global_cmvn: torch.nn.Module = None,
|
|
|
+ use_dynamic_left_chunk: bool = False,
|
|
|
+ key_bias: bool = True,
|
|
|
+ selfattention_layer_type: str = "selfattn",
|
|
|
+ activation_type: str = "relu",
|
|
|
+ gradient_checkpointing: bool = False,
|
|
|
+ ):
|
|
|
+ """ Construct TransformerEncoder
|
|
|
+
|
|
|
+ See Encoder for the meaning of each parameter.
|
|
|
+ """
|
|
|
+ super().__init__(input_size, output_size, attention_heads,
|
|
|
+ linear_units, num_blocks, dropout_rate,
|
|
|
+ positional_dropout_rate, attention_dropout_rate,
|
|
|
+ input_layer, pos_enc_layer_type, normalize_before,
|
|
|
+ static_chunk_size, use_dynamic_chunk, global_cmvn,
|
|
|
+ use_dynamic_left_chunk, gradient_checkpointing)
|
|
|
+ activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
|
|
+ self.encoders = torch.nn.ModuleList([
|
|
|
+ TransformerEncoderLayer(
|
|
|
+ output_size,
|
|
|
+ COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](attention_heads,
|
|
|
+ output_size,
|
|
|
+ attention_dropout_rate,
|
|
|
+ key_bias),
|
|
|
+ PositionwiseFeedForward(output_size, linear_units,
|
|
|
+ dropout_rate, activation),
|
|
|
+ dropout_rate, normalize_before) for _ in range(num_blocks)
|
|
|
+ ])
|
|
|
+
|
|
|
+
|
|
|
+class ConformerEncoder(BaseEncoder):
|
|
|
+ """Conformer encoder module."""
|
|
|
+
|
|
|
+ def __init__(
|
|
|
+ self,
|
|
|
+ input_size: int,
|
|
|
+ output_size: int = 256,
|
|
|
+ attention_heads: int = 4,
|
|
|
+ linear_units: int = 2048,
|
|
|
+ num_blocks: int = 6,
|
|
|
+ dropout_rate: float = 0.1,
|
|
|
+ positional_dropout_rate: float = 0.1,
|
|
|
+ attention_dropout_rate: float = 0.0,
|
|
|
+ input_layer: str = "conv2d",
|
|
|
+ pos_enc_layer_type: str = "rel_pos",
|
|
|
+ normalize_before: bool = True,
|
|
|
+ static_chunk_size: int = 0,
|
|
|
+ use_dynamic_chunk: bool = False,
|
|
|
+ global_cmvn: torch.nn.Module = None,
|
|
|
+ use_dynamic_left_chunk: bool = False,
|
|
|
+ positionwise_conv_kernel_size: int = 1,
|
|
|
+ macaron_style: bool = True,
|
|
|
+ selfattention_layer_type: str = "rel_selfattn",
|
|
|
+ activation_type: str = "swish",
|
|
|
+ use_cnn_module: bool = True,
|
|
|
+ cnn_module_kernel: int = 15,
|
|
|
+ causal: bool = False,
|
|
|
+ cnn_module_norm: str = "batch_norm",
|
|
|
+ key_bias: bool = True,
|
|
|
+ gradient_checkpointing: bool = False,
|
|
|
+ ):
|
|
|
+ """Construct ConformerEncoder
|
|
|
+
|
|
|
+ Args:
|
|
|
+ input_size to use_dynamic_chunk, see in BaseEncoder
|
|
|
+ positionwise_conv_kernel_size (int): Kernel size of positionwise
|
|
|
+ conv1d layer.
|
|
|
+ macaron_style (bool): Whether to use macaron style for
|
|
|
+ positionwise layer.
|
|
|
+ selfattention_layer_type (str): Encoder attention layer type,
|
|
|
+ the parameter has no effect now, it's just for configure
|
|
|
+ compatibility.
|
|
|
+ activation_type (str): Encoder activation function type.
|
|
|
+ use_cnn_module (bool): Whether to use convolution module.
|
|
|
+ cnn_module_kernel (int): Kernel size of convolution module.
|
|
|
+ causal (bool): whether to use causal convolution or not.
|
|
|
+ key_bias: whether use bias in attention.linear_k, False for whisper models.
|
|
|
+ """
|
|
|
+ super().__init__(input_size, output_size, attention_heads,
|
|
|
+ linear_units, num_blocks, dropout_rate,
|
|
|
+ positional_dropout_rate, attention_dropout_rate,
|
|
|
+ input_layer, pos_enc_layer_type, normalize_before,
|
|
|
+ static_chunk_size, use_dynamic_chunk, global_cmvn,
|
|
|
+ use_dynamic_left_chunk, gradient_checkpointing)
|
|
|
+ activation = COSYVOICE_ACTIVATION_CLASSES[activation_type]()
|
|
|
+
|
|
|
+ # self-attention module definition
|
|
|
+ encoder_selfattn_layer_args = (
|
|
|
+ attention_heads,
|
|
|
+ output_size,
|
|
|
+ attention_dropout_rate,
|
|
|
+ key_bias,
|
|
|
+ )
|
|
|
+ # feed-forward module definition
|
|
|
+ positionwise_layer_args = (
|
|
|
+ output_size,
|
|
|
+ linear_units,
|
|
|
+ dropout_rate,
|
|
|
+ activation,
|
|
|
+ )
|
|
|
+ # convolution module definition
|
|
|
+ convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
|
|
+ cnn_module_norm, causal)
|
|
|
+
|
|
|
+ self.encoders = torch.nn.ModuleList([
|
|
|
+ ConformerEncoderLayer(
|
|
|
+ output_size,
|
|
|
+ COSYVOICE_ATTENTION_CLASSES[selfattention_layer_type](
|
|
|
+ *encoder_selfattn_layer_args),
|
|
|
+ PositionwiseFeedForward(*positionwise_layer_args),
|
|
|
+ PositionwiseFeedForward(
|
|
|
+ *positionwise_layer_args) if macaron_style else None,
|
|
|
+ ConvolutionModule(
|
|
|
+ *convolution_layer_args) if use_cnn_module else None,
|
|
|
+ dropout_rate,
|
|
|
+ normalize_before,
|
|
|
+ ) for _ in range(num_blocks)
|
|
|
+ ])
|